黄色视频不卡_午夜福利免费观看在线_亚洲国产精品999在线_欧美绝顶高潮抽搐喷水_久久精品成人免费网站_晚上一个人看的免费电影_国产又色又爽无遮挡免费看_成人国产av品久久久

    1. <dd id="lgp98"></dd>
      • <dd id="lgp98"></dd>
        1. 官方微信|手機(jī)版

          產(chǎn)品展廳

          產(chǎn)品求購企業(yè)資訊會(huì)展

          發(fā)布詢價(jià)單
          杭州大吉光電儀器有限公司

          化工儀器網(wǎng)>產(chǎn)品展廳>生命科學(xué)儀器>植物生理生態(tài)儀器>植物根系生長/生態(tài)監(jiān)測系統(tǒng)> RhizoTron根系高光譜成像分析技術(shù)

          分享
          舉報(bào) 評價(jià)

          RhizoTron根系高光譜成像分析技術(shù)

          具體成交價(jià)以合同協(xié)議為準(zhǔn)

          聯(lián)系方式:文老師查看聯(lián)系方式

          聯(lián)系我們時(shí)請說明是化工儀器網(wǎng)上看到的信息,謝謝!


             北京易科泰生態(tài)技術(shù)有限公司成立于2002年,為中關(guān)村高新技術(shù)企業(yè),致力于生態(tài)-農(nóng)業(yè)-健康研究監(jiān)測技術(shù)推廣、研發(fā)與服務(wù),特別是在光譜成像技術(shù)(高光譜成像技術(shù)、葉綠素?zé)晒獬上窦夹g(shù)、紅外熱成像技術(shù)、無人機(jī)遙感等)、植物表型分析技術(shù)、呼吸與能量代謝測量技術(shù)等方面,與專業(yè)企業(yè)PSI、Specim、Sable等合作,致力于植物科學(xué)、土壤與地球科學(xué)、動(dòng)物能量代謝、水體與藻類及生態(tài)環(huán)境領(lǐng)域先進(jìn)儀器技術(shù)的引進(jìn)推廣和技術(shù)研發(fā)集成,為植物/作物表型分析、生態(tài)修復(fù)及生態(tài)保護(hù)、能量代謝測量等提供規(guī)劃設(shè)計(jì)、技術(shù)方案與系統(tǒng)集成、技術(shù)咨詢與科技服務(wù)。公司技術(shù)團(tuán)隊(duì)80%以上具備碩士或碩士以上學(xué)位,并與*研究生院、中科院植物研究所、中科院動(dòng)物所、中科院地理科學(xué)與資源研究所、中國農(nóng)科院、中國林科院、中國環(huán)科院、中國水科院、清華大學(xué)、中國農(nóng)業(yè)大學(xué)、北京林業(yè)大學(xué)、北京大學(xué)、中國海洋大學(xué)、陜西師范大學(xué)、內(nèi)蒙古大學(xué)等建立了長期的技術(shù)合作交流關(guān)系。


             公司下設(shè)有葉綠素?zé)晒饧夹g(shù)與植物表型業(yè)務(wù)部、EcoTech®實(shí)驗(yàn)室、光譜成像與無人機(jī)遙感事業(yè)部及無人機(jī)遙感研究中心(與陜西師范大學(xué)合作建立)、動(dòng)物能量代謝實(shí)驗(yàn)室、內(nèi)蒙古阿拉善蒙古牛生態(tài)牧業(yè)研究院及青島分公司。實(shí)驗(yàn)室擁有葉綠素?zé)晒獬上瘛⑷~綠素?zé)晒鈨x、水體藻類熒光儀、SPECIM高光譜儀、WORKSWELL紅外熱成像儀、EasyChem全自動(dòng)化學(xué)分析儀、MicroMac1000水質(zhì)在線監(jiān)測系統(tǒng)、ACE土壤呼吸自動(dòng)監(jiān)測系統(tǒng)、SoilBox便攜式土壤氣體通量測量系統(tǒng)、動(dòng)物呼吸測量系統(tǒng)、LCpro 光合作用測量儀、Hood土壤入滲儀、年輪分析儀等各種儀器設(shè)備,可以進(jìn)行實(shí)驗(yàn)研究分析、實(shí)驗(yàn)培訓(xùn)等,歡迎與易科泰生態(tài)研究室開展合作研究。


             易科泰公司與歐洲PSI公司(葉綠素?zé)晒饧夹g(shù)與表型分析技術(shù))、美國SABLE公司(動(dòng)物能量代謝技術(shù))、歐洲SPECIM公司(高光譜成像技術(shù))、歐洲WORKSWELL公司(紅外熱成像技術(shù))、歐洲ATOMTRACE公司(LIBS元素分析技術(shù))、歐洲BCN無人機(jī)遙感中心、歐洲ITRAX公司(樣芯密度掃描與元素分析)、美國VERIS公司、英國ADC公司、德國UGT公司、歐洲SYSTEA公司等著名生態(tài)儀器技術(shù)領(lǐng)域的研發(fā)機(jī)構(gòu)和廠商建立了密切的合作關(guān)系,在FluorCam葉綠素?zé)晒獬上衽c熒光測量技術(shù)、PlantScreen植物表型分析技術(shù)、高光譜成像技術(shù)、紅外熱成像技術(shù)、光合作用與植物生理生態(tài)研究監(jiān)測、土壤呼吸與碳通量研究監(jiān)測、動(dòng)物呼吸代謝測量、水質(zhì)分析與藻類研究監(jiān)測、CoreScanner樣芯密度CT與元素分析技術(shù)、LIBS元素分析技術(shù)、無人機(jī)生態(tài)遙感技術(shù)等生態(tài)儀器技術(shù)及其系統(tǒng)方案集成有著豐富的經(jīng)驗(yàn),成為我國農(nóng)業(yè)、林業(yè)、地球科學(xué)、生態(tài)環(huán)境研究等領(lǐng)域科技進(jìn)步的重要研究技術(shù)支持力量。由公司研制生產(chǎn)的EcoDrone®無人機(jī)遙感平臺(tái)、SoilTron®多功能小型蒸滲儀技術(shù)、SoilBox®土壤呼吸測量技術(shù)、PhenoPlot®輕便型作物表型分析系統(tǒng)、SCG-N土壤剖面CO2/O2梯度監(jiān)測系統(tǒng)、植物生理生態(tài)監(jiān)測技術(shù)、動(dòng)物能量代謝測量技術(shù)等,在中科院修購項(xiàng)目、*學(xué)科群項(xiàng)目、CERN網(wǎng)絡(luò)(生態(tài)系統(tǒng)監(jiān)測網(wǎng)絡(luò))等項(xiàng)目中發(fā)揮重要作用。


             “工欲善其事,必先利其器”,易科泰公司將秉承“利其器,善其事”的經(jīng)營理念,為國內(nèi)生態(tài)-農(nóng)業(yè)-健康研究與發(fā)展提供優(yōu)秀的技術(shù)方案和服務(wù)。


          歡迎關(guān)注北京易科泰微信公眾號(hào)







          土壤與植物生理生態(tài)研究監(jiān)測、環(huán)境氣象監(jiān)測、水文水質(zhì)及地下水監(jiān)測、水土保持研究監(jiān)測、荒漠化監(jiān)測、精準(zhǔn)農(nóng)業(yè)以及動(dòng)物生態(tài)研究等儀器技術(shù)的引進(jìn)推廣和系統(tǒng)集成,并為生態(tài)環(huán)境實(shí)驗(yàn)研究和規(guī)劃設(shè)計(jì)提供技術(shù)方案和分析測量。

          產(chǎn)地類別 國產(chǎn) 價(jià)格區(qū)間 面議
          應(yīng)用領(lǐng)域 環(huán)保,農(nóng)業(yè),綜合

          1、概述

          根系是植物地下部分為適應(yīng)陸地生活長期進(jìn)化而形成的營養(yǎng)器官,具有支撐地上部分的基本作用,不僅在水、礦物質(zhì)和碳水化合物的吸收、轉(zhuǎn)化和儲(chǔ)存中發(fā)揮著重要的作用,還能夠穩(wěn)定植物體并與土壤形成物理和化學(xué)聯(lián)系。有研究學(xué)者認(rèn)為,優(yōu)良根系的品種有利于提高產(chǎn)量穩(wěn)定性、資源利用效率及對環(huán)境脅迫的抵抗力[1],根系也被作為育種目標(biāo)。根系的形態(tài),例如根長、根系體積、根系直徑和根干物質(zhì),可以反映根系的健康情況。當(dāng)植物受到脅迫時(shí),根系會(huì)產(chǎn)生一系列生長和發(fā)育、形態(tài)、生物量以及生理生化代謝變化以適應(yīng)脅迫條件。因此,更好地了解植物根系和根際過程有助于提高植物生產(chǎn)和可持續(xù)土壤管理的資源效率。

          根系研究的關(guān)鍵在于使植物“隱藏的一半”能被可視化和量化。

          71.png

          傳統(tǒng)植物根系的研究方法包括挖掘法、定位法、土鉆法等,通過挖根、洗根等操作后對根系進(jìn)行形態(tài)學(xué)、生理生化等方面的研究,此類方法不僅破壞性大、耗時(shí)長、取樣成本高,且存在一定的局限性[2]。近年來,無損成像方法在植物科學(xué)中變得越來越流行。傳統(tǒng)上局限于RGB成像的高通量應(yīng)用正在向更寬的光譜范圍發(fā)展,從而能夠?qū)ΩH成分進(jìn)行化學(xué)成像[3,4],也為地下根系的研究提供了新的途徑。

          為了解決傳統(tǒng)根系研究方法所存在的缺陷并方便對根系進(jìn)行成像,市場上出現(xiàn)了一系列產(chǎn)品,如人工培養(yǎng)基(瓊脂、發(fā)芽紙、水培等)培養(yǎng)植物幼苗的方法,但該方法植株的生長條件受到人們的質(zhì)疑;微根窗技術(shù)是一種非破壞性、定點(diǎn)直接觀察和研究植物根系的方法,是活體根系監(jiān)測、根系動(dòng)態(tài)生長監(jiān)測最主要的方法之一。但該方法的缺陷在于窗面及觀察深度都比較有限,且在根系生長過程中可能會(huì)產(chǎn)生大量細(xì)根圍繞在玻璃管周圍,影響觀測的準(zhǔn)確性[5-7]。因此,基于根窗技術(shù),填土根箱成像系統(tǒng)應(yīng)運(yùn)而生,用于植物根系成像。

          基于根箱栽培的植物根系表型RGB成像存在一個(gè)缺陷,即需要依賴于根與土壤足夠的對比度才能進(jìn)行自動(dòng)分割。而高光譜成像數(shù)據(jù)能夠克服根與土壤分割困難的問題,能夠?qū)Ω当硇图吧誀畛煞诌M(jìn)行成像分析。

          根系表型研究方法對比

          根系研究方法

          優(yōu)點(diǎn)

          缺點(diǎn)

          代表性儀器

          挖掘法、土鉆法

          經(jīng)濟(jì)成本低

          破壞性;耗時(shí)耗力;

          WinRhizo洗根圖像分析系統(tǒng)

          微根窗法

          非破壞性;

          定點(diǎn)觀測

          窗面尺寸小

          MS-190超高清微根窗相機(jī)系統(tǒng)

          根箱栽培法

          -RGB成像

          非破壞性;

          可實(shí)現(xiàn)高通量分析

          圖像自動(dòng)分割依賴于根與土壤的對比度

          PlantScreen高通量植物表型系統(tǒng)

          根箱栽培法

          -高光譜成像

          自動(dòng)圖像分割;

          可對根系成分進(jìn)行化學(xué)成像

          經(jīng)濟(jì)成本略高

          RhizoTron®植物根系高光譜成像分析系統(tǒng)

          基于此,易科泰生態(tài)技術(shù)公司結(jié)合近幾年來高光譜成像技術(shù)創(chuàng)新應(yīng)用(易科泰 SpectrAPP ® 項(xiàng)目)實(shí)驗(yàn)研究,開發(fā)了一款RhizoTron®植物根系高光譜成像分析系統(tǒng),該系統(tǒng)基于根窗技術(shù),可對RhizoBox根盒培養(yǎng)的植物根系進(jìn)行原位非損傷表型成像分析,具備多功能高光譜成像分析功能,可對植物根系進(jìn)行高光譜和自發(fā)光熒光成像。能夠?qū)崿F(xiàn)植物根系進(jìn)行原位表型高光譜成像分析和動(dòng)態(tài)監(jiān)測。可應(yīng)用于植株根系成像分析、抗性篩選及遺傳育種、病蟲害脅迫及干旱研究、土壤結(jié)構(gòu)及養(yǎng)分研究等領(lǐng)域。

          2RhizoTron®植物根系高光譜成像分析系統(tǒng)

          2.1 系統(tǒng)介紹

          RhizoTron®植物根系高光譜成像分析系統(tǒng)可對生長于RhizoBox根盒(帶根窗)的作物根系進(jìn)行高光譜成像分析和UV激發(fā)生物熒光成像分析(選配),可選配Thermo-RGB成像分析及冠層表型成像分析。

          RhizoTron植物根系高光譜成像分析系統(tǒng)由主機(jī)系統(tǒng)和高光譜成像系統(tǒng)組成,其中主機(jī)系統(tǒng)包括系統(tǒng)平臺(tái)(主機(jī)箱)、控制單元、樣品托、數(shù)據(jù)處理服務(wù)器等組成;光譜成像系統(tǒng)由光譜成像單元(包括成像傳感器、光源、云臺(tái)等)和自動(dòng)掃描軸組成。

          72.png

          2.2 功能特點(diǎn)

          1)基于RhizoTron®根窗技術(shù)的高光譜成像分析技術(shù),配有植物培養(yǎng)模塊,由樣品托盤、適配器、不同規(guī)格尺寸RhizoBox根系觀測培養(yǎng)根盒組成,或自己制作培養(yǎng)根盒;可選配多通道智能LED培養(yǎng)臺(tái)

          2)標(biāo)配為60度傾斜自動(dòng)掃描成像(與植物培養(yǎng)角度一致),同時(shí)對RhizoBox根系和幼苗進(jìn)行高光譜成像分析和RGB成像分析,可選配其它角度如45度、70度和90度(垂直掃描成像)

          3)可對根系進(jìn)行UV-MCF紫外光激發(fā)生物熒光高光譜成像,以研究分析根系活動(dòng)及根系與土壤互作關(guān)系、熒光假單胞菌等AvrahamAlonyandRaphaelLinker,2013);或選配根系Thermo-RGB成像分析

          73.png

          4)可選配頂部冠層RGB成像分析、紅外熱成像分析、高光譜成像分析、葉綠素?zé)晒獬上穹治觯蛇x配適于正常培養(yǎng)盆的樣品托)

          5)可選配iPOT數(shù)字化植物培養(yǎng)盆或RhizoBox根系培養(yǎng)盒,持續(xù)監(jiān)測土壤水分溫度、重量、植物生長、光合效率、PIperformanceIndex)、莖流等生理生態(tài)指標(biāo),可自動(dòng)采集土壤滲漏水并進(jìn)行土壤營養(yǎng)鹽分析

          6)模塊式結(jié)構(gòu),具備強(qiáng)大的系統(tǒng)擴(kuò)展功能,系統(tǒng)平臺(tái)自動(dòng)萬向腳輪,方便移動(dòng)

          7)可遠(yuǎn)程控制(選配)、自動(dòng)運(yùn)行數(shù)據(jù)采集存儲(chǔ)等功能

          2.3 技術(shù)指標(biāo)

          1)控制單元為嵌入式操作系統(tǒng),可進(jìn)行雙重控制(觸控屏+PC端全中文GUI軟件),實(shí)現(xiàn)遠(yuǎn)程操控相機(jī)及平臺(tái)

          2)自動(dòng)掃描軸推掃速度與精度:1-40mm/s,移動(dòng)精度1mm,有效掃描范圍:標(biāo)配100cm

          3)高光譜成像(標(biāo)配400-1000nm,可選配900-1700nm)可成像分析植被生理生化指標(biāo)、健康指數(shù)、光合利用效率、植被脅迫、水分、氮素等指數(shù)。配備PhenoRoot根系分析軟件,如需對地上部分進(jìn)行同時(shí)分析,可選配SpectrAPP分析軟件

          4)標(biāo)配RGB彩色成像:分辨率2448×2048像素,配備專業(yè)植物根系分析軟件

          5SpectrAPP®高光譜成像分析軟件:進(jìn)行光譜融合、ROI選區(qū)分析、光譜分析、頻率直方圖、自動(dòng)識(shí)別不同波段峰值,可分析近百種光譜指數(shù),根據(jù)需求定制添加光譜指數(shù),同時(shí)能夠分析根系表型數(shù)據(jù)

          6PhenoRoot根系分析軟件,可分析根長、根系最大寬度、凸包面積、根系總長、根系面積(生物量)、根系剖面分析(根系密度)等

          7)Thermo-RGB成像融合分析(選配),包括Thermo-RGB融合分析軟件,紅外熱成像分辨率:640×512像素;測量溫度范圍:-25℃-150℃;光譜范圍:7.513.5μm

          8)多通道智能LED培養(yǎng)臺(tái),RGBW四通道智能調(diào)整LED光源,0-100%可調(diào),可模擬晝夜節(jié)律、不同光配方等,最大光強(qiáng)300μmol/m2·s

          9)葉綠素?zé)晒獬上駟卧ㄟx配),專業(yè)高靈敏度葉綠素?zé)晒獬上?/span>CCD,幀頻50fps,分辨率720×560像素,像素大小8.6×8.3µm,可自動(dòng)運(yùn)行Fv/Fm、Kautsky誘導(dǎo)效應(yīng)、熒光淬滅分析、光響應(yīng)曲線等protocols,自動(dòng)測量分析50多個(gè)葉綠素?zé)晒鈪?shù),包括:Fv/Fm、Fv/FmY(II)、NPQ、qN、qP、Rfd、ETR等,自動(dòng)形成葉綠素?zé)晒鈪?shù)圖

          10)系統(tǒng)平臺(tái)規(guī)格:標(biāo)配約145cm×60cm×160cm(長×寬×高)、重量約50kg

          74.png

          3、應(yīng)用案例

          3.1 甜菜根系RGB及高光譜成像分析:

          以甜菜為實(shí)驗(yàn)對象進(jìn)行了實(shí)驗(yàn),對其根系進(jìn)行RGB成像和高光譜成像(900-1700nm),分別進(jìn)行了形態(tài)分析和生化性狀進(jìn)行分析[8]。

          1)形態(tài)分析:以手動(dòng)分割作為參考,使用RGB和高光譜圖像跟蹤甜菜根系的生長、形態(tài)和結(jié)構(gòu),發(fā)現(xiàn)基于RGB自動(dòng)分割并不能很好的區(qū)分老根和土壤,跟蹤根系總根長誤差為6.94%;高光譜成像通過光譜比率獲得根系的二值圖像進(jìn)而對根系長度進(jìn)行分析,誤差僅為1.5%。使用紫外燈(UV)與模擬太陽光照射得到的根系可視化圖像,發(fā)現(xiàn)在明亮背景下UV圖像更易識(shí)別根系。

          75.png

          左:RGB原始圖像;中:(A)使用繪圖板手動(dòng)分割根系,(B)頂部分割不良的舊根軸區(qū)域,(C)圖像底部正確分割的新根軸,(D)基于RGB獲得的二值圖像;右:基于高光譜獲得的二值圖像

          76.png

          UV和模擬太陽光根系可視化圖像。(A): UV;(B): 模擬太陽光

          2)生化性狀分析:對不同發(fā)生位置及成熟度的根系和土壤的平均光譜進(jìn)行分析,發(fā)現(xiàn)三種根系光譜曲線存在顯著差異,且1100nm附近新側(cè)根與主根出現(xiàn)吸收峰,而老根并未出現(xiàn)。但老根與土壤反射曲線趨勢較一致,在水分吸收區(qū)域(1450nm)附近,根系光譜斜率高于土壤。同時(shí),它使用不同含水量土壤校準(zhǔn)根盒的平均光譜進(jìn)行校準(zhǔn),從而繪制根箱上水分分布圖。

          77.png

          3.2小麥根系RGB及高光譜成像分析

          以小麥為實(shí)驗(yàn)對象,對植株進(jìn)行扦插處理,扦插后14、2847、94101201天對根箱的上三分之一進(jìn)行高光譜成像(900-1700nm)RGB成像,分別進(jìn)行了形態(tài)分析和生化性狀進(jìn)行分析[9]

          1)形態(tài)分析:使用WinRhizo對根長度進(jìn)行結(jié)構(gòu)量化,以手動(dòng)分割作為參考,分別使用高光譜圖像和RGB圖像對根系可見根長度進(jìn)行預(yù)測,結(jié)果表示,基于RGB分割為83.4%,光譜分割為77.0%。但兩種分割方法的斜率沒有顯著差異(P=0.225)。表明兩種方法在預(yù)測此處使用的基質(zhì)的可見根長度方面具有相似的性能。

          78.png

          2)生化性狀分析:基于光譜特征,使用決策樹模型對根像素的徑級(jí)類別進(jìn)行預(yù)測,其訓(xùn)練集為r=0.86,驗(yàn)證集r=048;基于一階導(dǎo)數(shù)差分光譜(1649-1447nm)構(gòu)建根系腐爛時(shí)間指數(shù)模型,使用修剪后28天和101天的光譜數(shù)據(jù)作為驗(yàn)證集,其r2=0.96

          79.png


          3.3 土壤含水量估測及根腐病識(shí)別

          以甜菜為實(shí)驗(yàn)對象對其根系進(jìn)行高光譜成像(900-1700nm),同時(shí)測定與實(shí)驗(yàn)相同土壤的根箱中的不同土壤含水量及高光譜成像,以此作為訓(xùn)練集對含水量模型進(jìn)行訓(xùn)練,對根箱的每個(gè)土壤像素的含水量進(jìn)行預(yù)測;以油用蘿卜作為實(shí)驗(yàn)對象,使用化學(xué)計(jì)量分析對根系不同時(shí)間后腐爛的光譜特征進(jìn)行識(shí)別,通過光譜的時(shí)間變化推斷根系腐爛情況[10]。

          80.png

          3.4不同基因型扁豆霉菌根腐病的RGB和高光譜成像評估

          以不同基因型扁豆為實(shí)驗(yàn)對象,分別進(jìn)行RGB成像和高光譜成像(550-1700nm),研究高通量表型技術(shù)評估霉菌根腐病的嚴(yán)重程度,以快速鑒別耐藥基因型。設(shè)置對照組和實(shí)驗(yàn)組,培養(yǎng)14日后實(shí)驗(yàn)組接種黃芽孢桿菌,對照組施以清水。接種14日后使用0-5疾病評分量表對根系進(jìn)行評分,作為地面參考數(shù)據(jù)[11]。

          81.png

          RGB圖像:通過提取特征變量對植物生物量研究,發(fā)現(xiàn)投影面積與植物生物量有很強(qiáng)的相關(guān)性,與地下生物量相關(guān)性高達(dá)0.9,地上生物量相關(guān)性為0.84;對根系病害程度進(jìn)行預(yù)測,發(fā)現(xiàn)其R2達(dá)到0.67,而通過地上部特征變量進(jìn)行預(yù)測,其R2僅達(dá)到0.23。

          82.png

          高光譜圖像:通過提取感興趣區(qū)的光譜,發(fā)現(xiàn)從地上樣品的高光譜反射曲線來看,健康和感染的樣品光譜反射曲線相差較小,而根系的光譜曲線差異較顯著。使用歸一化差異光譜指數(shù)(NDSI)對根系疾病程度進(jìn)行預(yù)測,其R2達(dá)到0.54,使用地上部光譜特征進(jìn)行預(yù)測,其R2僅為0.27。

          83.png

          3.5 油菜重金屬鉛(Pb)含量的高光譜估測

          以油菜為實(shí)驗(yàn)對象,對葉片和根系分別進(jìn)行高光譜成像,對根系圖像進(jìn)行比值運(yùn)算(根部:861.96/480.46nm),油菜葉片和根的分割閾值t分別為1.31.6,使根系與背景進(jìn)行圖像分割。分別建立支持向量機(jī)(SVM)和SAE深度神經(jīng)網(wǎng)絡(luò)對樣品中的鉛(Pb)含量建立模型并預(yù)測,發(fā)現(xiàn)SAE深度神經(jīng)網(wǎng)絡(luò)模型精度較高。在SAE模型的基礎(chǔ)上使用遷移學(xué)習(xí)的方法得到T-SAE模型,并對油菜葉片和根系中的Pb含量進(jìn)行預(yù)測,發(fā)現(xiàn)其精度有所提升,油菜葉片達(dá)到0.92,根系達(dá)0.93。基于此可以發(fā)現(xiàn)高光譜成像技術(shù)結(jié)合深度神經(jīng)網(wǎng)絡(luò)能夠?qū)τ筒酥参镏械闹亟饘?/span>Pb進(jìn)行定性定量檢測[12]。


          84.png

          3.6 野生植物幼苗根系高光譜成像分析

          易科泰EcoTech®實(shí)驗(yàn)室技術(shù)人員以一株野生型元寶槭幼株為樣本,采集900-1700nm高光譜數(shù)據(jù),并對其進(jìn)行光譜成像分析及根系形態(tài)分析。

          85.png


          4、參考文獻(xiàn)

          [1] Kutschera, L. Wurzelatlas mitteleurop?ischer Ackerunkr?uter und Kulturpflanzen. DLG-Verlags-GmbH, Frankfurt am Main (1960).;Kenrick, P., & Strullu-Derrien, C. Theorigin and early evolution of roots. Plant Physiol. 166, 570-580 (2014).

          [2] 秦天元, 孫超, 畢真真等. 植物根系成像技術(shù)研究進(jìn)展及馬鈴薯根系研究應(yīng)用前景[J]. 核農(nóng)學(xué)報(bào), 2019, 33(02): 412-419.

          [3] Dhondt S, Wuyts N, Inzé D. Cell to whole-plant phenotyping: the best is yet to come. TrendsPlant Sci. 2013; 18:42839.

          [4] Pierret A. Multi-spectral imaging of rhizobox systems: new perspectivesfor the observation and discrimination of rhizosphere components. Plant Soil. 2008; 310: 2638.

          [5] Vamerali T, Ganis A, Bona S, Mosca GAn approach to minirhizotron root image analysisJ]. Plant and Soil, 1999, 217( 1/2) : 183193.

          [6] Johnson M G, Tingey D T, Phillips D L, Storm M J. Advancing fine rootresearch with minirhizotrons [J].Environmental and Experimental Botany, 2001, 45( 3) : 263289.

          [7] 秦天元, 孫超, 畢真真等. 植物根系成像技術(shù)研究進(jìn)展及馬鈴薯根系研究應(yīng)用前景[J]. 核農(nóng)學(xué)報(bào), 2019, 33(02):412-419.

          [8] Gernot B , Mouhannad A , Alireza N , et al. RGB and Spectral Root Imaging for Plant Phenotyping and Physiological Research: Experimental Setupand Imaging Protocols. [J]. Journal of visualized experiments : JoVE, 2017, (126).

          [9] Gernot B, Alireza N, Thomas A, et al. Hyperspectral imaging: a novel approach for plant root phenotyping.[J]. Plantmethods, 2018, 14(1).

          [10] Gernot B , Mouhannad A , Alireza N . Root System Phenotying ofSoil-Grown Plants via RGB and Hyperspectral Imaging. [J].Methods in molecularbiology (Clifton, N.J.), 2021, 2264245-268.

          [11] Advanced Imaging for Quantitative Evaluation of Aphanomyces RootRot Resistance in Lentil[J]. Frontiers in Plant Science, 2019, 10.

          [12] Nakaji T, Noguchi K, Oguma H. Classification of rhizosphere components using visiblenear infrared spectral images. Plant Soil. 2008; 310: 24561.





          化工儀器網(wǎng)

          采購商登錄
          記住賬號(hào)    找回密碼
          沒有賬號(hào)?免費(fèi)注冊

          提示

          ×

          *您想獲取產(chǎn)品的資料:

          以上可多選,勾選其他,可自行輸入要求

          個(gè)人信息:

          溫馨提示

          該企業(yè)已關(guān)閉在線交流功能

          泰州市| 克什克腾旗| 凌云县| 武强县| 安吉县| 乐都县| 同德县| 临颍县| 湄潭县| 沈阳市| 久治县| 大庆市| 托里县| 鄂伦春自治旗| 大庆市| 建平县| 大城县| 肥城市| 耿马| 忻城县| 武宁县| 松江区| 库车县| 宜春市| 绵竹市| 南木林县| 鄢陵县| 安康市| 特克斯县| 新竹市| 房产| 阳高县| 洮南市| 甘德县| 交口县| 柏乡县| 贵南县| 孙吴县| 宁乡县| 淳化县| 河北区|