化工儀器網(wǎng)>產(chǎn)品展廳>環(huán)境監(jiān)測儀器>其它環(huán)境監(jiān)測儀器>其它環(huán)境儀器>OSEN-ZSW 公共場合噪聲聲紋AI識別算法盒子
OSEN-ZSW 公共場合噪聲聲紋AI識別算法盒子
參考價 | ¥ 20000 |
訂貨量 | ≥1套 |
- 公司名稱 深圳市奧斯恩凈化技術有限公司
- 品牌 OSEN/奧斯恩
- 型號 OSEN-ZSW
- 產(chǎn)地
- 廠商性質(zhì) 生產(chǎn)廠家
- 更新時間 2024/9/10 16:38:19
- 訪問次數(shù) 488
聯(lián)系方式:梁經(jīng)理18948352970 查看聯(lián)系方式
聯(lián)系我們時請說明是化工儀器網(wǎng)上看到的信息,謝謝!
揚塵監(jiān)測,在線揚塵噪音監(jiān)測系統(tǒng),工地揚塵在線監(jiān)控設備,大氣負氧離子監(jiān)測儀,氣象自動監(jiān)測站等。
產(chǎn)地類別 | 國產(chǎn) | 應用領域 | 環(huán)保 |
---|
聲明:該項目為非標定制服務功能,只能根據(jù)實際需求確認后方可報價,如有需求煩與我司客服聯(lián)系索要正式報價單,給您帶來不便請諒解!
公共場合噪聲聲紋AI識別算法盒子,也叫聲音識別,是一種生物識別技術,通過轉換聲音信號為電信 號,用計算機進行特征提取和身份驗證。其生物學基礎在于生物的語音信號攜帶著獨&特的聲波頻譜,就像指紋一樣具有唯&一性和穩(wěn)定性。
公共場合噪聲聲紋AI識別算法盒子的主要任務包括:語音信號處理、聲紋特征提取、聲紋建模、聲紋 比對、判別決策等。
技術特點
1.噪聲聲音類型識別是指通過機器學習算法,對環(huán)境中的噪聲進行分類,以判 斷其可能的來源和類型。例如,區(qū)分機器噪聲、人聲噪聲、交通噪聲等。
3.AI 在噪聲聲音類型識別中的應用主要體現(xiàn)在深度學習技術中,特別是卷積神 經(jīng)網(wǎng)絡的應用。首先,需要收集大量的聲音數(shù)據(jù),并利用深度學習算法對這 些數(shù)據(jù)進行訓練,以提取出有用的特征并進行模型優(yōu)化。然后,將輸入的聲 音與已知的聲音模型進行比對,通過計算輸入聲音的特征與模型之間的距離 或相似度,來確定輸入聲音的身份。
3.此外,對于特定的應用場景,如室內(nèi)場景、戶外場景識別,公共場所、辦公 室場景識別等,還可以使用專門的音頻處理前端部分。
4.值得注意的是,盡管 AI 在噪聲聲音類型識別方面有著廣泛的應用前景,但 是在實際應用中仍然面臨著許多挑戰(zhàn),如噪聲環(huán)境的復雜性、語音信號的多 樣性以及模型的優(yōu)化等問題。因此,如何提高噪聲聲音類型識別的準確性和 魯棒性,仍然是未來研究的重要方向。
技術路線
1.建立音頻樣例庫,覆蓋面廣,根據(jù)不同的噪聲監(jiān)管單位將聲音劃分為五大類, 不少于 50 個聲音子類別;
3.通過深度學習 AI 技術,對噪聲樣本進行分析和處理,提取出其中的聲紋特 征,構建聲紋識別模型;
3.不斷的測試和優(yōu)化,提高聲紋識別模型的準確性和魯棒性,使其能夠在各種 環(huán)境和條件下都能準確地識別出聲紋類型;
4.采用深度卷積神經(jīng)網(wǎng)絡算法實現(xiàn)音頻事件的識別分類。通過卷積操作對音頻進行時域特征和 logmel 頻域特征的提取,并結合波形的時域特征和頻域特 征作為音頻的有效特征,再通過卷積采樣進一步獲取特征圖,最終以全連接 網(wǎng)絡分類器實現(xiàn)特征的類別分類。
技術參數(shù)
主控芯片:Rockchip RK358
CPU:8 核 64 位處理器 4 個 Cortex-A76 和 4 個 Cortex-A55 及獨立的 NEON 協(xié)處理器 Cortex-A76 主頻 2.4GHz,Cortex-A55 主頻 1.8GHz
GPU:集成 ARM Mali-G610;內(nèi)置 3D GPU;兼容 OpenGL ES1.1/2.0/3.2、 OpenCL 2.2 和 Vulkan 1.2
NPU:內(nèi)嵌的 NPU 支持 INT4/INT8/INT16/FP16 混合運算,算力高達 6Top
存儲:8G+64G emmc
接口:有 2 個 HDMl 輸出端口,1 個輸入 HDMl 端口,最高可解碼 8K@60P 視頻,兩個 PCIe 擴展的 2.5G 以太網(wǎng)接口,配備一個支持安裝 NVMe 固態(tài) 硬盤的 M.2 M-Key 插槽,一個支持 Wi-Fi6/BT 模塊的 M.2 E-Key 插槽。此 外,有 2 個 USB 3.0、2 個 USB 2.0、2 個 Type-C(其中一個為電源接口)
基于 Pytorch 實現(xiàn)的聲紋識別模型:模型是一種基于深度學習的說話人識別 系統(tǒng),其結構中融入了通道注意力機制、信息傳播和聚合操作。這個模型的 關鍵組成部分包括多層幀級別的 TDNN 層、一個統(tǒng)計池化層以及兩層句子 級別的全連接層,此外還配備了一層 softmax,損失函數(shù)為交叉熵。
特征提取:預加重->分加窗->離散傅里葉變換->梅爾濾波器組->逆離散傅里葉變換
模型訓練集:>100000 個訓練樣本
聲音類型:聲音類型主要劃分為五大類別,分別為生活噪聲、施工噪聲、工 業(yè)噪聲、交通噪聲、自然噪聲,其中包含打雷,犬吠,刮風,敲擊、蟲鳴鳥 叫、蛙鳴等不少于 50 個聲音子類別
聲紋識別準確率:≥90%
識別響應速率:<1s
調(diào)用方式:支持云端調(diào)用或者本地終端調(diào)用
技術協(xié)議:支持 HTTP 協(xié)議
接口種類:USB、HDMI、SD、RJ45
電源接口:TYPE-C
工作電壓:5V3A
相關分類
該廠商的其他產(chǎn)品
- OSEN-ZSW 聲紋AI識別溯源模塊 聲源智能識別技術盒子
- OSEN-ZSW 聲紋AI識別數(shù)據(jù)采集系統(tǒng) 聲源識別算法單元
- OSEN-ZSW 大數(shù)據(jù)驅動的聲紋識別模塊 聲源AI識別單元
- OSEN 鳥類物種聲紋識別監(jiān)測儀 野生動物分析管理
- OSEN 自然保護區(qū)生物多樣性聲紋AI智能識別監(jiān)測儀
- OSEN 濕地公園野生動物聲紋識別數(shù)據(jù)采集分析系統(tǒng)
- OSEN-ZSW 聲紋算法識別模型產(chǎn)品 支持HTTP協(xié)議
- OSEN-ZSW 蟲鳴鳥叫蛙鳴聲音類別AI識別系統(tǒng) HTTP協(xié)議
相關技術文章
- 甲烷在線監(jiān)測系統(tǒng) 快速檢測環(huán)境
- 輻射在線監(jiān)測系統(tǒng) 有效監(jiān)測管理
- 防爆氣象站 采用防爆技術 可在潛
- 養(yǎng)老院室內(nèi)空氣監(jiān)測系統(tǒng) 助力優(yōu)
- 機器人走航監(jiān)測系統(tǒng) 機器人搭載
- 智慧農(nóng)業(yè)監(jiān)測系統(tǒng) 完善科技成果
- 地鐵站室內(nèi)環(huán)境監(jiān)測系統(tǒng) 為管理
- 甲烷在線監(jiān)測系統(tǒng) 助推城鎮(zhèn)甲烷
- 奧斯恩智能聲紋音頻感知終端 支
- 便攜負氧離子監(jiān)測儀 內(nèi)置可充電