您好, 歡迎來到化工儀器網(wǎng)! 登錄| 免費(fèi)注冊| 產(chǎn)品展廳| 收藏商鋪|
*已經(jīng)進(jìn)行到了如火如荼的階段,無論是集體顏值超高的德國還是有著*射手的阿根廷,本屆*的表現(xiàn)都讓我們的心情跌宕起伏。我們不難發(fā)現(xiàn)阿根廷縱然擁有梅西這樣的*射手,旦失去中場的強(qiáng)力支持,進(jìn)攻就會(huì)顯得很不連貫,以至于出線歷程險(xiǎn)象環(huán)生。而德國隊(duì)的表現(xiàn)更是讓球迷哭泣,感覺他們?nèi)鄙傩┲袌龅暮诵哪哿驼嬲娜宋?,以至于關(guān)鍵時(shí)刻不能完成致命擊。“Teamwork”這個(gè)詞真是對(duì)足球準(zhǔn)確的詮釋了。
我們的科學(xué)研究情況也是這樣,個(gè)前沿的研究課題要想取得突破離不開的科研人員,同樣也離不開多種進(jìn)設(shè)備的協(xié)同工作。目前量子材料、量子信息和低溫光學(xué)是為活躍的研究方向。這些域都有著自己的色儀器,好像儀器中的“前鋒”;另外還有為這些設(shè)備提供研究環(huán)境和平臺(tái)使得它們能夠協(xié)同工作的低溫光學(xué)恒溫器,這就好像儀器中的“中場核心”。前鋒固不可少,而中場核心更是決定比賽走勢的*。今天我們就為大家來介紹中場隊(duì)員——Montana超精細(xì)無液氦低溫光學(xué)恒溫器。
圖1 Montana超精細(xì)無液氦低溫光學(xué)恒溫器
系統(tǒng)色: 無液氦制冷 低溫度:3K 超低震動(dòng):1-5nm 溫度穩(wěn)定性:于10mK 光學(xué)窗口:多可達(dá)8個(gè) 位置穩(wěn)定性:位置防溫漂移技術(shù) 高數(shù)值孔 NA:0.95 可兼容磁場:1T -9T 樣品腔體大可到20cm直徑 兼容高壓腔的各種光學(xué)實(shí)驗(yàn) | 應(yīng)用域: 各種光譜實(shí)驗(yàn) 共聚焦顯微 NV色心 單量子點(diǎn)發(fā)光 量子通訊 高壓光學(xué) 低溫MOKE 自旋電子學(xué) 低溫FMR |
日前亞洲套Montana超精細(xì)無液氦低溫光學(xué)恒溫器超穩(wěn)定高阻尼系統(tǒng)HILA落戶中國香港。在過去短短兩個(gè)月中,Montana超精細(xì)無液氦低溫光學(xué)恒溫器微系統(tǒng)所、復(fù)旦大學(xué)以及中國科學(xué)技術(shù)大學(xué)陸朝陽研究組順完成了安裝。
Montana超精細(xì)無液氦低溫光學(xué)恒溫器作為低溫光學(xué)和量子信息域重要的設(shè)備之,為各種測量儀器提供低溫光學(xué)研究環(huán)境。目前Montana超精細(xì)無液氦低溫光學(xué)恒溫器已經(jīng)發(fā)展成為型號(hào)齊全,功能全面,應(yīng)用域?yàn)閺V泛的低溫光學(xué)恒溫器。如果將科研看成場比賽的話,那么Montana超精細(xì)無液氦低溫光學(xué)恒溫器長期以來扮演著低溫光學(xué)與量子信息科研比賽的“中場核心”,在科研道路上披荊斬棘幫助用戶“攻城略地”。
圖2 Quantum Design工程師(右)與微系統(tǒng)所用戶
Montana Instruments 始終不滿足于眼前的成績,在不斷探索繼續(xù)前進(jìn),在與多種第三方測量設(shè)備的兼容上都取得了突破,甚至已經(jīng)成為NanoMOKE和FMR設(shè)備進(jìn)行低溫測量的推薦方案。目前Montana超精細(xì)無液氦低溫光學(xué)恒溫器提供的第三方設(shè)備集成方案包含各種磁體、各種顯微鏡、多種拉曼光譜儀、MOKE、鐵磁共振、多種波段光譜儀、各種電學(xué)測量設(shè)備、微區(qū)掃描SQUID、STM等幾十種設(shè)備。MI工程師業(yè)的使客戶省去了繁瑣的實(shí)驗(yàn)搭建環(huán)節(jié),大大提高科研效率。更為可喜的是,2017年Cryostation詞已經(jīng)正式獲批注冊商標(biāo),象征著MI在低溫光學(xué)域的影響力和地位。
如果說Montana超精細(xì)無液氦低溫光學(xué)恒溫器以前是名的中場核心,現(xiàn)在已經(jīng)成長為球隊(duì)的。這樣的成績源于科學(xué)家對(duì)Montana Instruments的肯定激勵(lì)我們朝著更廣的應(yīng)用域,更深的研究細(xì)節(jié)奮勇前進(jìn)!
附:Montana超精細(xì)無液氦低溫光學(xué)恒溫器光譜學(xué)域文章舉例
Raman Spectroscopy
2017 - David D. Awschalom (University of Chicago) - Nature Physics - Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system
2017 - Amir Safavi-Naeini (Stanford University) - Phys. Rev. Applied - Engineering Phonon Leakage in Nanomechanical Resonators
2016 - Douglas Nason (Rice University) - ACS Nano - Plasmonic heating in Au nanowires at low temperatures: The role of thermal boundary resistance
2016 - Kenneth S. Burch (Boston College) - Review of Scientific Instruments - Low vibration high numerical aperture automated variable temperature Raman microscope
Photoluminescence, Fluorescence, Single Molecule Spectroscopy, Super Resolution Microscopy
2018 - Hui Deng (University of Michigan) - Nature Comms - Photonic-crystal exciton-polaritons in monolayer semiconductors
2017 - Hongkun Park (Harvard University) - Nature Nanotechnology - Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons
2017 - Kartik Srinivasan (NIST) - Review of Scientific Instruments - Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters
2016 - Xiaodong Xu (University of Washington) - Science - Valley-Polarized Exciton Dynamics in a 2D Semiconductor Heterostructure
2014 - Edo Waks (University of Maryland) - Nature Photonics - All-optical coherent control of vacuum Rabi oscillations
Optical Transmission, Optical Absorption Spectroscopy, Pump-Probe Techniques
2018 - Carlos Silva (Georgia Tech) - Phys. Rev. Materials - Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder
2016 - Alan Bristow (West Virginia University) - SPIE - Two-dimensional coherent spectroscopy of excitons, biexcitons and exciton-polaritons
2015 - Mikael Afzelius (University of Geneva, Switzerland) - Phys. Rev. Lett - Coherent spin control at the quantum level in an ensemble-based optical memory
Optical Reflection, Pump-Probe Techniques
2018 - Hongkun Park (Harvard University) - Phys. Rev. Lett - Large Excitonic Reflectivity of Monolayer MoSe2 Encapsulated in Hexagonal Boron Nitride
2017 - Lilian Childress (McGill University) - Optics Express - A High-Mechanical Bandwidth Fabry-Perot Fiber Cavity
2017 - Jun Ye (JILA, NIST) - Phys. Rev. Lett - Ultrastable Silicon Cavity in a Continuously Operating Closed-Cycle Cryostat at 4 K
Optical Cavities
2018 - Jelena Vuckovic (Stanford University) - Nano Lett - Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond
2017 - Jun Ye (JILA, NIST) - Phys. Rev. Lett - Ultrastable Silicon Cavity in a Continuously Operating Closed-Cycle Cryostat at 4 K
2017 - Kartik Srinivasan (NIST) - Science - Quantum correlations from a room-temperature optomechanical cavity
2016 - Alberto Amo (CNRS, Université Paris-Saclay) - Nature Comms - Interaction-induced hopping phase in driven-dissipative coupled photonic microcavities
2015 - Paul Barclay (University of Calgary, Canada) - Phys. Rev. X - Single-Crystal Diamond Nanobeam Waveguide Optomechanics
請(qǐng)輸入賬號(hào)
請(qǐng)輸入密碼
請(qǐng)輸驗(yàn)證碼
以上信息由企業(yè)自行提供,信息內(nèi)容的真實(shí)性、準(zhǔn)確性和合法性由相關(guān)企業(yè)負(fù)責(zé),化工儀器網(wǎng)對(duì)此不承擔(dān)任何保證責(zé)任。
溫馨提示:為規(guī)避購買風(fēng)險(xiǎn),建議您在購買產(chǎn)品前務(wù)必確認(rèn)供應(yīng)商資質(zhì)及產(chǎn)品質(zhì)量。