黄色视频不卡_午夜福利免费观看在线_亚洲国产精品999在线_欧美绝顶高潮抽搐喷水_久久精品成人免费网站_晚上一个人看的免费电影_国产又色又爽无遮挡免费看_成人国产av品久久久

    1. <dd id="lgp98"></dd>
      • <dd id="lgp98"></dd>
        1. 產(chǎn)品展廳收藏該商鋪

          您好 登錄 注冊(cè)

          當(dāng)前位置:
          世聯(lián)博研(北京)科技有限公司>供求商機(jī)>flexflow-顯微細(xì)胞流體剪切拉伸應(yīng)力培養(yǎng)系統(tǒng),顯微載片流體培養(yǎng)系統(tǒng)
          flexflow-顯微細(xì)胞流體剪切拉伸應(yīng)力培養(yǎng)系統(tǒng),顯微載片流體培養(yǎng)系統(tǒng)
          返回列表頁
          • flexflow-顯微細(xì)胞流體剪切拉伸應(yīng)力培養(yǎng)系統(tǒng),顯微載片流體培養(yǎng)系統(tǒng)

          舉報(bào)
          貨物所在地: 北京北京市
          更新時(shí)間: 2024-09-21 21:00:07
          期: 2024年9月21日--2025年3月21日
          已獲點(diǎn)擊: 328
          在線詢價(jià)收藏產(chǎn)品

          (聯(lián)系我們,請(qǐng)說明是在 化工儀器網(wǎng) 上看到的信息,謝謝?。?/p>

          產(chǎn)品簡介

          1.可以在提供流體切應(yīng)力的同時(shí)抻拉細(xì)胞,測(cè)試血管和結(jié)綈組織細(xì)胞對(duì)液體流動(dòng)的實(shí)時(shí)反應(yīng)。
          2.為培育在StageFlexer硅膠模表面或者基質(zhì)蛋白包被的細(xì)胞培養(yǎng)片上的細(xì)胞提供切應(yīng)力。
          3.使用FX-5000T應(yīng)力加載系統(tǒng)抻拉細(xì)胞,并且可以在實(shí)驗(yàn)前,實(shí)驗(yàn)中或者實(shí)驗(yàn)后提供切應(yīng)力
          4.計(jì)算機(jī)控制蠕動(dòng)泵,調(diào)節(jié)切應(yīng)力大小,從0-35 dynes/cm2
          5.使用標(biāo)準(zhǔn)正立式顯微鏡實(shí)時(shí)觀察細(xì)胞在切應(yīng)力下的反應(yīng)。

          詳細(xì)介紹

          Flexflow單通道平行板流室系統(tǒng)提供流體切應(yīng)力同時(shí)抻拉細(xì)胞


          1)FlexFlow顯微切應(yīng)力加載設(shè)備(SHEAR Stress device)





          2、流體剪切應(yīng)力培養(yǎng)載片如下圖:


          細(xì)胞培養(yǎng)載片包括顯微鏡載(物)片和蓋玻片兩種產(chǎn)品,表面經(jīng)過特殊處理,適合于細(xì)胞的貼壁與生長。 
          兩種規(guī)格:75 mm x 25 mm x 1.0 mm ,75 mm x 24 mm x 0.2 mm 。 
          細(xì)胞培養(yǎng)載片的邊緣涂有1.0 mm寬的特氟隆邊框(Teflon),可以有效控制細(xì)胞生長在切應(yīng)力加載區(qū)域。 
          自身熒光低,光學(xué)性能佳。 
          不同包被的培養(yǎng)表面提高細(xì)胞的貼壁與生長。 
          五種不同包被的培養(yǎng)表面:Amino, Collagen (Type I or IV) Elastin, ProNectin (RGD), Laminin (YIGSR). 
          所以產(chǎn)品都是無菌獨(dú)立包裝,僅供一次性使用。

          75mm x 24mm x 0.2mm 和 FlexFlow配套使用 
          產(chǎn)品編號(hào) 英文名稱 
          FFCS-U Culture Slips — Untreated 
          FFCS-A Culture Slips — Amino 
          FFCS-C Culture Slips — Collagen Type I 
          FFCS-C(IV) Culture Slips — Collagen Type IV 
          FFCS-E Culture Slips — Elastin 
          FFCS-P Culture Slips — ProNectin 
          FFCS-L Culture Slips — Laminin

          3)微流納流HiQ Flowmate微流體控制器


          • 三維細(xì)胞力學(xué)加載儀,體外細(xì)胞牽張壓縮應(yīng)力,體外細(xì)胞機(jī)械加力裝置,體外細(xì)胞牽張刺激裝置,細(xì)胞牽張應(yīng)力加

          • 雙注射泵可以在微升、納升、微微升水平上控制液流.雙注射泵,獨(dú)立的液流控制系統(tǒng)。

          • 傳送,穩(wěn)定的流速

          • 可控流速范圍1.2pL/ min-260.6ml/min

          • 提供不同流速模型:穩(wěn)定型,脈沖型,連續(xù)型,截流型和震蕩型;

          • 可進(jìn)行循環(huán),連續(xù)的液流控制;同時(shí)運(yùn)行不同的流速模型;

          • 內(nèi)置閥門控制液流模式;

          • 機(jī)載計(jì)算器用于流量、流時(shí)、流速、剪切力的計(jì)算;

          • 高分辨率、觸屏控制。

          • 用戶友好的圖標(biāo)驅(qū)動(dòng)程序;

          • 便于泵和芯片對(duì)接的生物芯片支架;根據(jù)現(xiàn)有流速有三種不同的機(jī)型;

            多種應(yīng)用程序:


          • 液體稀釋,配給及注射器;

          • 動(dòng)物實(shí)驗(yàn)中的藥物注射和體液抽?。?/p>

          • 施加液流剪切力;

          • 微流體和納流體實(shí)驗(yàn);

          • 混合、分流液體;

          • 震蕩型液流的控制需要iHIQ Flowmate二級(jí)閥門配件



          系統(tǒng)完整結(jié)構(gòu)圖

          1.可以在提供流體切應(yīng)力的同時(shí)抻拉細(xì)胞,測(cè)試血管和結(jié)綈組織細(xì)胞對(duì)液體流動(dòng)的實(shí)時(shí)反應(yīng)。

          2.為培育在StageFlexer硅膠模表面或者基質(zhì)蛋白包被的細(xì)胞培養(yǎng)片上的細(xì)胞提供切應(yīng)力。

          3.使用FX-5000T應(yīng)力加載系統(tǒng)抻拉細(xì)胞,并且可以在實(shí)驗(yàn)前,實(shí)驗(yàn)中或者實(shí)驗(yàn)后提供切應(yīng)力

          4.計(jì)算機(jī)控制蠕動(dòng)泵,調(diào)節(jié)切應(yīng)力大小,從0-35 dynes/cm2

          5.使用標(biāo)準(zhǔn)正立式顯微鏡實(shí)時(shí)觀察細(xì)胞在切應(yīng)力下的反應(yīng)。

          6.檢測(cè)細(xì)胞在流體作用下的排列反應(yīng)。

          7.加力同時(shí)實(shí)時(shí)檢測(cè)在液體切應(yīng)力下各種激活劑/抑制劑對(duì)細(xì)胞反應(yīng)的影響。使用熒光團(tuán)例如FURA-2檢測(cè)細(xì)胞內(nèi)[Ca2+]ic或者其它離子對(duì)切應(yīng)力反應(yīng)。(可以與str-4000六通道切應(yīng)力系統(tǒng)配套使用)






          FLEXFLOW AND STREAMER FLUID SHEAR STRESS SYSTEMS

          1. Archambault JM, Elfervig MK, Tsuzaki M, Herzog W, Banes AJ. Shear stress response of rabbit tendon cells is serum dependent.Proceedings of the Eleventh Canadian Society for Biomechanics Conference, 181, 2000.

          2. Archambault JM, Elfervig-Wall MK, Tsuzaki M, Herzog W, Banes AJ. Rabbit tendon cells produce MMP-3 in response to fluid flow without significant calcium transients. J Biomech 35(3):303-309, 2002.

          3. Ge C, Song J, Chen L, Wang L, Chen Y, Liu X, Zhang Y, Zhang L, Zhang M. Atheroprotective pulsatile flow induces ubiquitin-proteasome-mediated degradation of programmed cell death 4 in endothelial cells. PLoS One 9(3):e91564, 2014. doi: 10.1371/journal.pone.0091564. eCollection 2014.

          4. Clark PR, Jensen TJ, Kluger MS, Morelock M, Hanidu A, Qi Z, Tatake RJ, Pober JS. MEK5 is activated by shear stress, activates ERK5 and induces KLF4 to modulate TNF responses in human dermal microvascular endothelial cells. Microcirculation 18(2):102-117, 2011. doi: 10.1111/j.1549-8719.2010.00071.x.

          5. Eifler RL, Blough ER, Dehlin JM, Haut Donahue TL. Oscillatory fluid flow regulates glycosaminoglycan production via an intracellular calcium pathway in meniscal cells. J Orthop Res 24(3):375-384, 2006.

          6. Elfervig M, Francke E, Archambault J, Herzog W, Tsuzaki M, Bynum D, Brown TD, Banes AJ. Fluid-induced shear stress activates human tendon cells to signal through multiple Ca2+ dependent pathways [abstract]. Transactions of the 46th Annual Meeting of the Orthopaedic Research Society 25:179, 2000.

          7. Elfervig M, Lotano M, Tsuzaki M, Faber J, Banes A J. Fluid-induced shear stress modulates Cx-43 expression in avian tendon cells but does not induce a Ca2+ signal [abstract]. Transactions of the 47th Annual Meeting of the Orthopaedic Research Society 26:570, 2001.

          8. Elfervig MK, Minchew JT, Francke E, Tsuzaki M, Banes AJ. IL-1β sensitizes intervertebral disc annulus cells to fluid-induced shear stress. J Cell Biochem 82(2):290-298, 2001.

          9. Finley MJ, Rauova L, Alferiev IS, Weisel JW, Levy RJ, Stachelek SJ. Diminished adhesion and activation of plaets and neutrophils with CD47 functionalized blood contacting surfaces. Biomaterials 33(24):5803-5811, 2012. Epub 2012 May 20.

          10. Francke E, Banes A, Elfervig M, Brown T, Bynum D. Fluid-induced shear stress increases [Ca2+]ic in cultured human tendon epitenon cells [abstract]. Transactions of the 46th Annual Meeting of the Orthopaedic Research Society 25:638, 2000.

          11. Francke E, Elfervig MK, Sood A, Brown TD, Bynum DK, Banes AJ. Fluid-induced shear stress stimulates Ca2+ signaling in human epitenon cells [abstract]. 1999 Advances in Bioengineering, J.S. Wayne, ed. American Society of Mechanical Engineers: New York, 1999.

          12. Gao X, Wu L, O'Neil RG. Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 278(29):27129-27137, 2003.

          13. Glossop JR, Hidalgo-Bastida LA, Cartmell SH. Fluid shear stress induces differential gene expression of leukemia inhibitory factor in human mesenchymal stem cells. J Biomat Tiss Eng 1:166-176, 2011.

          14. Gortazar AR, Martin-Millan M, Bravo B, Plotkin LI, Bellido T. Crosstalk between caveolin-1/extracellular signal-regulated kinase (ERK) and β-catenin survival pathways in osteocyte mechanotransduction. J Biol Chem 288(12):8168-8175, 2013. doi: 10.1074/jbc.M112.437921. Epub 2013 Jan 28.

          15. Grabias BM, Konstantopoulos K. Epithelial-mesenchymal transition and fibrosis are mutually exclusive reponses in shear-activated proximal tubular epithelial cells. FASEB J 26(10):4131-41, 2012. doi: 10.1096/fj.12-207324. Epub 2012 Jun 28.

          16. Hamamura K, Zhang P, Zhao L, Shim JW, Chen A, Dodge TR, Wan Q, Shih H, Na S, Lin CC, Sun HB, Yokota H. Knee loading reduces MMP13 activity in the mouse cartilage. BMC Musculoskelet Disord 14(1):312, 2013. doi: 10.1186/1471-2474-14-312.

          17. Hosoya T, Maruyama A, Kang MI, Kawatani Y, Shibata T, Uchida K, Warabi E, Noguchi N, Itoh K, Yamamoto M. Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells. J Biol Chem 280(29):27244-27250, 2005.

          18. Jaitovich A, Mehta S, Na N, Ciechanover A, Goldman RD, Ridge KM. Ubiquitin-proteasome-mediated degradation of keratin intermediate filaments in mechanically stimulated A549 cells. J Biol Chem 283(37):25348-25355, 2008. Epub 2008 Jul 10.

          19. Kamel MA, Picconi JL, Lara-Castillo N, Johnson ML. Activation of β-catenin signaling in MLO-Y4 osteocytic cells versus 2T3 osteoblastic cells by fluid flow shear stress and PGE2: Implications for the study of mechanosensation in bone. Bone 47(5):872-881, 2010. Epub 2010 Aug 14.

          20. Lee CY, Hsu HC, Zhang X, Wang DY, Luo ZP. Cyclic compression and tension regulate differently the metabolism of chondrocytes. J Musculoskeletal Res 9(2):59-64, 2005.

          21. Malone AM, Batra NN, Shivaram G, Kwon RY, You L, Kim CH, Rodriguez J, Jair K, Jacobs CR. The role of actin cytoskeleton in oscillatory fluid flow-induced signaling in MC3T3-E1 osteoblasts. Am J Physiol Cell Physiol 292(5):C1830-C1836, 2007. Epub 2007 Jan 24.

          22. Metaxa E, Meng H, Kaluvala SR, Szymanski MP, Paluch RA, Kolega J. Nitric oxide-dependent stimulation of endothelial cell proliferation by sustained high flow. Am J Physiol Heart Circ Physiol 295(2):H736-H742, 2008. Epub 2008 Jun 13.

          23. Ni J, Waldman A, Khachigian LM. c-Jun regulates shear- and injury-inducible Egr-1 expression, vein graft stenosis after autologous end-to-side transplantation in rabbits, and intimal hyperplasia in human saphenous veins. J Biol Chem 285(6):4038-4048, 2010. Epub 2009 Nov 23.

          24. Qi J, Chi L, Faber J, Koller B, Banes AJ. ATP reduces gel compaction in osteoblast-populated collagen gels. J Appl Physiol 102(3):1152-60, 2007.

          25. Radel C, Carlile-Klusacek M, Rizzo V. Participation of caveolae in β1 integrin-mediated mechanotransduction. Biochem Biophys Res Commun 358(2):626-631, 2007. Epub 2007 May 7.

          26. Radel C, Rizzo V. Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization. Am J Physiol Heart Circ Physiol 288(2):H936-H945, 2005.

          27. Ridge KM, Linz L, Flitney FW, Kuczmarski ER, Chou YH, Omary MB, Sznajder JI, Goldman RD. Keratin 8 phosphorylation by protein kinase C delta regulates shear stress-mediated disassembly of keratin intermediate filaments in alveolar epithelial cells. J Biol Chem 280(34):30400-30405, 2005.

          28. Rosser J, Bonewald LF. Studying osteocyte function using the cell lines MLO-Y4 and MLO-A5. Methods Mol Biol 816:67-81, 2012.

          29. Shim JW, Hamamura K, Chen A, Wan Q, Na S, Yokota H. Rac1 mediates load-driven attenuation of mRNA expression of nerve growth factor beta in cartilage and chondrocytes. J Musculoskelet Neuronal Interact 13(3):372-9, 2013.

          30. Sivaramakrishnan S, DeGiulio JV, Lorand L, Goldman RD, Ridge KM. Micromechanical properties of keratin intermediate filament networks. PNAS 105(3):889–894, 2008.

          31. Sivaramakrishnan S, Schneider JL, Sitikov A, Goldman RD, Ridge KM. Shear stress induced reorganization of the keratin intermediate filament network requires phosphorylation by protein kinase C zeta. Mol Biol Cell 20(11):2755-2765, 2009. Epub 2009 Apr 8.

          32. Srivastava T, McCarthy ET, Sharma R, Cudmore PA, Sharma M, Johnson ML, Bonewald LF. Prostaglandin E(2) is crucial in the response of podocytes to fluid flow shear stress. J Cell Commun Signal 4(2):79-90, 2010. Epub 2010 Apr 8.

          33. Stachelek SJ, Alferiev I, Connolly JM, Sacks M, Hebbel RP, Bianco R, Levy RJ. Cholesterol-modified polyurethane valve cusps demonstrate blood outgrowth endothelial cell adhesion post-seeding in vitro and in vivo. Ann Thorac Surg 81(1):47-55, 2006.

          34. Sun HB, Liu Y, Qian L, Yokota H. Model-based analysis of matrix metalloproteinase expression under mechanical shear. Ann Biomed Eng31(2):171-180, 2003.

          35. Takai E, Landesberg R, Katz RW, Hung CT, Guo XE. Substrate modulation of osteoblast adhesion strength, focal adhesion kinase activation, and responsiveness to mechanical stimuli. Mol Cell Biomech 3(1):1-12, 2006.

          36. Wang XL, Fu A, Spiro C, Lee HC. Proteomic analysis of vascular endothelial cells-effects of laminar shear stress and high glucose. J Proteomics Bioinform 2:445, 2009.

          37. Wang P, Zhu F, Konstantopoulos K. The antagonistic actions of endogenous interleukin-1β and 15-deoxy-Δ12,14-prostaglandin J2 regulate the temporal synthesis of matrix metalloproteinase-9 in sheared chondrocytes. J Biol Chem 287(38):31877-93, 2012. doi: 10.1074/jbc.M112.362731. Epub 2012 Jul 24.

          38. Wang P, Zhu F, Lee NH, Konstantopoulos K. Shear-induced interleukin-6 synthesis in chondrocytes: roles of E prostanoid (EP) 2 and EP3 in cAMP/protein kinase A- and PI3-K/Akt-dependent NF-kappaB activation. J Biol Chem 285(32):24793-24804, 2010. Epub 2010 Jun 1.

          39. Wu L, Gao X, Brown RC, Heller S, O'Neil RG. Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells. Am J Physiol Renal Physiol 293(5):F1699-F1713, 2007. Epub 2007 Aug 15.

          40. Yang B, Rizzo V. Shear Stress Activates eNOS at the Endothelial Apical Surface Through β1 Containing Integrins and Caveolae. Cell Mol Bioeng 6(3):346-354, 2013.

          41. Yang W, Lu Y, Kalajzic I, Guo D, Harris MA, Gluhak-Heinrich J, Kotha S, Bonewald LF, Feng JQ, Rowe DW, Turner CH, Robling AG, Harris SE. Dentin matrix protein 1 gene cis-regulation: use in osteocytes to characterize local responses to mechanical loading in vitro and in vivo. J Biol Chem 280(21):20680-20690, 2005.

          42. Yokota H, Goldring MB, Sun HB. CITED2-mediated regulation of MMP-1 and MMP-13 in human chondrocytes under flow shear. J Biol Chem278(47):47275-47280, 2003.

          43. Yoo PS, Mulkeen AL, Dardik A, Cha CH. A novel in vitro model of lymphatic metastasis from colorectal cancer. J Surg Res 143(1):94-98, 2007. Epub 2007 Jul 19.

          44. Zhang K, Barragan-Adjemian C, Ye L, Kotha S, Dallas M, Lu Y, Zhao S, Harris M, Harris SE, Feng JQ, Bonewald LF. E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol Cell Biol 26(12):4539-45, 2006.

          45. Zhu F, Wang P, Kontrogianni-Konstantopoulos A, Konstantopoulos K. Prostaglandin (PG)D(2) and 15-deoxy-Delta(12,14)-PGJ(2), but not PGE(2), mediate shear-induced chondrocyte apoptosis via protein kinase A-dependent regulation of polo-like kinases. Cell Death Differ17(8):1325-1334, 2010. Epub 2010 Feb 12.

          46. Zhu F, Wang P, Lee NH, Goldring MB, Konstantopoulos K. Prolonged application of high fluid shear to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. PLoS One 5(12):e15174, 2010.



          • FlexFlow系統(tǒng)包括:

          • FlexFlow裝置;StreamSoft軟件

          • FlexFlow快拆接頭、膠管、FlexFlow 旁路連接器

          • MASTERFLEX L/S型號(hào)7550-10蠕動(dòng)泵及配套線纜、連接管

          • 2個(gè)穩(wěn)流器;硅潤滑劑

          • FX -5000 張力系統(tǒng)適配器

          • 顯微鏡適應(yīng)性FlexFlow底座

          • 快速鏈接細(xì)胞培養(yǎng)基瓶;一個(gè)快速鏈接真空瓶

          • 三個(gè)沒滅菌和六個(gè)滅菌膠原蛋白涂層薄培養(yǎng)載片 (載片規(guī)格:75 mm x 24 mm x 0.2 mm

          • 三個(gè)沒滅菌和六個(gè)滅菌膠原涂層StageFlexer膜

          • 配件包

            保證細(xì)胞在不同水平恒流或生理剪切力作用下仍保持黏附,在研究中得到了廣泛應(yīng)用。用蠕動(dòng)泵(peristaltic pump)或注射泵(syringe pump)提供瞬態(tài)剪切力使平行板流室的入流管和出流管之間產(chǎn)生壓差,使流室內(nèi)細(xì)胞受到均勻,震蕩或脈動(dòng)剪切力的作用


          • 微流納流HiQ Flowmate微流體控制器

          • 應(yīng)用文獻(xiàn)

          收藏該商鋪

          請(qǐng) 登錄 后再收藏

          提示

          您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

          對(duì)比框

          產(chǎn)品對(duì)比 產(chǎn)品對(duì)比 聯(lián)系電話 二維碼 在線交流

          掃一掃訪問手機(jī)商鋪
          86-010-67529703
          在線留言
          沙坪坝区| 潼关县| 金堂县| 兴和县| 天津市| 尖扎县| 仁化县| 会东县| 印江| 兰西县| 丹寨县| 孝义市| 教育| 陆良县| 白朗县| 永顺县| 会昌县| 南雄市| 光山县| 昭平县| 富锦市| 乐清市| 五原县| 广昌县| 罗定市| 马边| 商洛市| 兴安盟| 巢湖市| 清水河县| 多伦县| 永春县| 双柏县| 彭州市| 永兴县| 巢湖市| 本溪| 山东省| 宽城| 宝坻区| 扎鲁特旗|