黄色视频不卡_午夜福利免费观看在线_亚洲国产精品999在线_欧美绝顶高潮抽搐喷水_久久精品成人免费网站_晚上一个人看的免费电影_国产又色又爽无遮挡免费看_成人国产av品久久久

    1. <dd id="lgp98"></dd>
      • <dd id="lgp98"></dd>
        1. 產(chǎn)品展廳收藏該商鋪

          您好 登錄 注冊

          當前位置:
          世聯(lián)博研(北京)科技有限公司>供求商機>細胞力學(xué)測量光鑷,顯微鏡升級細胞力學(xué)光鑷,細胞微流變光鑷
          細胞力學(xué)測量光鑷,顯微鏡升級細胞力學(xué)光鑷,細胞微流變光鑷
          返回列表頁
          • 細胞力學(xué)測量光鑷,顯微鏡升級細胞力學(xué)光鑷,細胞微流變光鑷

          舉報
          貨物所在地: 國外
          更新時間: 2024-08-12 21:00:06
          期: 2024年8月12日--2025年2月12日
          已獲點擊: 545
          在線詢價收藏產(chǎn)品

          (聯(lián)系我們,請說明是在 化工儀器網(wǎng) 上看到的信息,謝謝?。?/p>

          產(chǎn)品簡介

          世聯(lián)博研公司代理的免校準、多光阱細胞力學(xué)光鑷系統(tǒng)(多光阱細胞力學(xué)光鑷生物分子力學(xué)光鑷,細胞微流變學(xué)光鑷)可以在已有顯微鏡上升級配置起來,免校準、使用簡潔方便、經(jīng)濟。

          詳細介紹

          世聯(lián)博研公司代理的西班牙impetux品牌的免校準、多光阱細胞力學(xué)光鑷系統(tǒng)(多光阱細胞力學(xué)光鑷生物分子力學(xué)光鑷,細胞微流變學(xué)光鑷)可以在已有顯微鏡上升級配置起來,免校準、使用簡潔方便、經(jīng)濟。

          impetux,Cygnium™ G-422,LUNAM T-40i,DEIMUS T-10i細胞組織力學(xué)側(cè)量光鑷,細胞力學(xué)光鑷,多光阱細胞力學(xué)生物分子力學(xué)光鑷,單細胞力學(xué)光鑷,單分子力譜光鑷,馬達蛋白光鑷,微流變學(xué)光鑷

          • 在活細胞中,免校準力測量
          • 多點中,活性微流變學(xué)測量
          • 細胞力學(xué)研究的自動化例程
          • 與相差、微分干涉或熒光顯微鏡兼容
          • 組織中力測量(厚0.5mm
          • 高效捕捉、低細胞損害
          • 樣品zui大激光功率控制
          •  
          • 光鑷平臺由兩個單元組成:
          • 光操控模塊:用于顯微樣品的捕獲和運動
          • 力傳感器模塊:用于試驗中涉及的生物力的測量

          ?可以在已有的顯微鏡上升級配置起來,簡潔方便經(jīng)濟

           

          應(yīng)用范圍:

           

          1. 單分子力譜

          單分子力譜光鑷測量分析系統(tǒng)

           

          Ø馬達蛋白

          ØDNA

          ØRNA

          Ø蛋白-蛋白相互作用:配體受體;膜蛋白

          2、馬達蛋白移動、運動

          3、單細胞力學(xué)

          細胞移動
          細胞拉伸—膜彈性
          細胞內(nèi)細胞器的操縱

          4、微流變學(xué)

          應(yīng)用文獻:

           

          Papers

          • Català, F. et al. “Extending calibration-free force measurements to optically-trapped rod-shaped samples“. Sci. Rep. 7, 42960; doi: 10.1038/srep42960 (2017).

          Optical trapping has become an optimal choice for biological research at the microscale due to its noninvasiveperformance and accessibility for quantitative studies, especially on the forces involved inbiological processes. However, reliable force measurements depend on the calibration of the opticaltraps, which is different for each experiment and hence requires high control of the local variables,especially of the trapped object geometry. Many biological samples have an elongated, rod-likeshape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certainmicroalgae, and a wide variety of bacteria and parasites. This type of samples often requires severaloptical traps to stabilize and orient them in the correct spatial direction, making it more difficult todetermine the total force applied. Here, we manipulate glass microcylinders with holographic opticaltweezers and show the accurate measurement of drag forces by calibration-free direct detection ofbeam momentum.

          • R. Bola, F. Català. M. Montes-Usategui, E. Martín-Badosa. Optical tweezers for force measurements and rheological studies on biological samples”.15th workshop on Information Optics (WIO), 2016.

          Measuring forces inside living cells is still a challenge due the characteristics of the trapped organelles (non-spherical, unknown size and index of refraction) and the cell cytoplasm surrounding them heterogeneous and dynamic, non-purely viscous). Here, we show how two very recent methods overcome these limitations: on the one hand, forces can be measured in such environment by the direct detection of changes in the light momentum; on the other hand, an active-passive calibration technique provides both the stiffness of the optical trap as well as the local viscoelastic properties of the cell cytoplasm.

          • Martín-Badosa, F. Català, J. Mas, M. Montes-Usategui, A. Farré, F. Marsà. “Force measurement in the manipulation of complex samples with holographic optical tweezers”15th workshop on Information Optics (WIO), 2016.
          • Derek Craig, Alison McDonald, Michael Mazilu, Helen Rendall, Frank Gunn-Moore, and Kishan Dholakia. “ Enhanced Optical Manipulation of Cells Using Antireflection Coated Microparticles”.ACS Photonics, 2 (10), pp 1403–1409, (2015).

            In molecular studies, an optically trapped bead may be functionalized to attach to a specific molecule, whereas in cell studies, direct manipulation with the optical field is usually employed. Using this approach, several methods may be used to measure forces with an optical trap. However, each has its limitations and requires an accurate knowledge of the sample parameters.6,7 In particular, force measurements can be challenging when working with nonspherical particles or in environments with an inhomogeneous viscosity, such as inside the cell. Recent developments in the field are moving toward obtaining direct force measurements by detecting light momentum changes. For this approach, the calibration factor only comes from the detection instrumentation and negates the requirement to recalibrate for changes in experimental conditions”.

          • Xing Ma, Anita Jannasch, Urban-Raphael Albrecht, Kersten Hahn, Albert Miguel-López, Erik Schäffer, and Samuel Sánchez. “Enzyme-Powered Hollow Mesoporous Janus Nanomotors”. Nano Lett., 15 (10), pp 7043–7050, (2015).

            “Using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications.”

          • Michael A. Taylor, Muhammad Waleed, Alexander B. Stilgoe, Halina Rubinsztein-Dunlop and Warwick P. Bowen. “Enhanced optical trapping via structured scattering“. Nature Photonics 9,669–673 (2015)
          • Gregor Thalhammer, Lisa Obmascher, and Monika Ritsch-Marte, “Direct measurement of axial optical forces“.Optics Express, Vol. 23, Issue 5, pp. 6112-6129 (2015)
          • Y. Jun, S.K. Tripathy, B.R.J. Narayanareddy, M. K. Mattson-Hoss, S.P. Gross, “Calibration of Optical Tweezers for In Vivo Force Measurements: How do Different Approaches Compare?”. Biophysical Journal, V 107, 1474-1484 (2014).

            Here, the authors present a comparison between two different methods for measuring forces inside living cells and provide measurements of the stall force of kinesin in vivo using the momentum-based approach. More information at: http://bioweb.bio.uci.edu/sgross/publications.html

          • A. Farré, E. Martín-Badosa, and M. Montes-Usategui, “The measurement of light momentum shines the path towards the cell”, Opt. Pur Apl. 47, 239-248 (2014).
          • A. Farré, F. Marsà, and M. Montes-Usategui, “A force measurement instrument for optical tweezers based on the detection of light momentum changes”, Proc. SPIE 9164, 916412 (2014).
          • J. Mas, A. Farré, J. Sancho-Parramon, E. Martín-Badosa, and M. Montes-Usategui, “Force measurements with optical tweezers inside living cells”,  Proc. SPIE 9164, 91640U (2014).
          • F. Català, F. Marsà, A. Farré, M. Montes-Usategui, and E. Martín-Badosa, “Momentum measurements with holographic optical tweezers for exploring force detection capabilities on irregular samples”, Proc. SPIE 9164, 91640A (2014).
          • A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles” Opt. Express 20, 12270-12291 (2012).

            This manuscript shows the relation between the determination of momentum measurements and back-focal-plane interferometry, and details how to obtain the force response of the sensor both from first principles and from its connection with trap stiffness calibration.

          • A. Farré and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes” Opt. Express 18, 11955-11968 (2010).

           In this work, the authors show the feasibility of combining optical tweezers (single-beam gradient traps) with the determination of forces using the measurement of the light momentum change.

           

          收藏該商鋪

          登錄 后再收藏

          提示

          您的留言已提交成功!我們將在第一時間回復(fù)您~

          對比框

          產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 在線交流

          掃一掃訪問手機商鋪
          86-010-67529703
          在線留言
          缙云县| 湖南省| 乌鲁木齐县| 富川| 永城市| 海淀区| 沁阳市| 临泉县| 苏尼特左旗| 泸水县| 九寨沟县| 绿春县| 铜川市| 青岛市| 司法| 休宁县| 日喀则市| 江油市| 从化市| 水城县| 藁城市| 巫山县| 汾西县| 格尔木市| 建湖县| 福建省| 商河县| 昭觉县| 莆田市| 全南县| 民丰县| 周宁县| 顺义区| 鹤峰县| 宜兰市| 香港| 玉溪市| 武平县| 惠东县| 时尚| 洛扎县|