黄色视频不卡_午夜福利免费观看在线_亚洲国产精品999在线_欧美绝顶高潮抽搐喷水_久久精品成人免费网站_晚上一个人看的免费电影_国产又色又爽无遮挡免费看_成人国产av品久久久

    1. <dd id="lgp98"></dd>
      • <dd id="lgp98"></dd>
        1. 產(chǎn)品展廳收藏該商鋪

          您好 登錄 注冊

          當(dāng)前位置:
          世聯(lián)博研(北京)科技有限公司>供求商機(jī)>SONIDEL SP100®-SONIDEL SP100®超聲基因轉(zhuǎn)染系統(tǒng)
          SONIDEL SP100®-SONIDEL SP100®超聲基因轉(zhuǎn)染系統(tǒng)
          返回列表頁
          • SONIDEL SP100®-SONIDEL SP100®超聲基因轉(zhuǎn)染系統(tǒng)

          舉報(bào)
          貨物所在地: 北京北京市
          產(chǎn)地: 美國
          更新時間: 2024-11-30 21:00:07
          期: 2024年11月30日--2025年5月30日
          已獲點(diǎn)擊: 822
          在線詢價(jià)收藏產(chǎn)品

          (聯(lián)系我們,請說明是在 化工儀器網(wǎng) 上看到的信息,謝謝?。?/p>

          產(chǎn)品簡介

          SONIDEL Ultrasound Transfection platform SP100 SONIDEL超聲波轉(zhuǎn)染平臺

          詳細(xì)介紹

          SONIDEL SP100 Sonoporation Platform,體外體內(nèi)超聲轉(zhuǎn)染系統(tǒng)

           

          1.jpg

           

          2.png

           

             

          In vitro gene transfer using the SONIDEL Ultrasound Transfection platform

          使用SONIDEL超聲轉(zhuǎn)染平臺體外基因轉(zhuǎn)染

          聲穿孔已成為基因的功能研究領(lǐng)域中*的技術(shù)手段

          ----適用于基因轉(zhuǎn)染(gene transfection)和藥物轉(zhuǎn)運(yùn)(drug delivery)

          GTS超聲波轉(zhuǎn)染儀采用超聲波原理,具有安全性、可靠性、靈活性、高效性。適用于臨床試驗(yàn)研究中的基因轉(zhuǎn)染(gene transfection)和藥物轉(zhuǎn)運(yùn)(drug delivery)領(lǐng)域。

           

          主要特點(diǎn): 

          o安全性:因?yàn)槌暡梢詰?yīng)用于臨床,所以儀器采用超聲波原理轉(zhuǎn)染,可以保證后期臨床試驗(yàn)研究的安全性。

          o靈活性:超聲波轉(zhuǎn)染儀的傳感器模塊具有自我校正功能,此模塊可以更換。

          o可用于聚焦超聲研究(FUS):具有高強(qiáng)度聚焦超聲傳感器模塊。

          o可以結(jié)合微泡使用:儀器結(jié)合微泡(Microbubbles)使用,可以提高轉(zhuǎn)染效率;并且使用特殊的微泡(如Targesphere SA)可以靶向特定細(xì)胞。

           

          應(yīng)用范圍:

          適用于動物細(xì)胞的體外轉(zhuǎn)染,以及動物體內(nèi)轉(zhuǎn)染(包括子宮內(nèi)或卵巢內(nèi)等)。

          1.原代細(xì)胞和細(xì)胞株系,如:HFLS-RA, Hela, KATOⅢ, MKN-45, CHO, NIH/3T3, HL-60, C1271, T24, Mouse ascites, Rat bladder, PC3, U937等。

          2.小鼠(Mouse)的大腦、肺、肝臟、腎臟、脾臟、血管、脊髓、皮膚、齒齦、腹膜、關(guān)節(jié)、足墊、耳朵等。

          3.小鼠胚胎(Mouse Fetal)的大腦、肺、心臟、肝臟、腸、羊膜等。

          4.大鼠(Rat)的小腸、大腸、唾腺、視網(wǎng)膜、角膜。

          5.家兔(Rabbit)的視網(wǎng)膜、角膜等。

          6.蜜蜂(Bee)的大腦等。

          7.非洲爪蟾蜍(Xenopus)。

          8.家蠶(Silkworm)的血細(xì)胞、絲腺、中腸、脂肪墊、馬氏管、卵巢、睪丸等。

           

          SONIDEL SP100? - Optimised for enhanced ultrasound-mediated gene transfer

          oIn Vitro, In Vivo, Ex Vivo, In Ovo transfection / nucleic acid transfer 

          oOptimised pre-set ultrasound output programs for use with SONIDEL STK10? Transfection Kit and SONIDEL MB101? Microbubble 

          oPrecision engineered in Europe 

          oUser friendly 

          oSelf-contained robust ultrasound head 

          oUltrasound head compatible with direct insertion into tissue culture medium 

          oA genuine cost break-through device 

          oCE marked 

          oElectrical and ultrasound safety comply fully with IEC safety standards .

           

          SONIDEL SP100? with SONIDEL STK10? Kit (including SONIDEL MB101? Microbubble) Photographic Results

          Plasmid   DNA – pCMV-Luc

          Minicircle DNA – MC07.CMV-luc

          3.jpg

           

          3.jpg

           

          MB+DNA

          MB+DNA+US

          DNA+US

           

          MB+DNA

          MB+DNA+US

          DNA+US

           

          Plus MB101

          No MB101

           

          Plus MB101

          No MB101

           

          .Larger Image

           

          Larger Image

           

          Luciferase Expression using MB101 In Vivo (pCMV-luc and MC07.CMV-luc) 

           

          4.jpg

          Adherent Cells in Opticell ?

          5.jpg

           

          FEATURES

           

          Output Frequency

           

          Output frequency is fixed at   precisely 1 MHz for optimised and reproducible penetration of ultrasound   through tissue culture vessels and tissue-based targets.

           

          Ultrasound Power/Density   Options

           

          Ultrasound power   density/intensity options between 0 and 5 W/cm2 with adjustments   of 0.1 W/cm2.

           

          Duty Cycle Range

           

          A wide range of duty cycles   ranging from 5 – * in 5% increments and emitting at a pulse frequency of   100 Hz.

          Automated Treatment Control   Time

          Automated control of treatment   time that may be adjusted in seconds up to a treatment time of 90 seconds and   thereafter in minutes up to a treatment time of 60 minutes.

           

          Water-sealed Ultrasound head

           

          The ultrasound head is   water-sealed and compatible with operational immersion in liquid.

          Pre-programmed Treatment   Parameters

           

          Supplied with 10 Operating   Programs, 5 of which are pre-programmed to the appropriate treatment   parameters to achieve optimal ultrasound-mediated transfection with the   SONIDEL STK? 10 Positive Control Transfection Kit. The other 5   programs may be adjusted to the specific conditions chosen by the operator

           

          Ultrasound Dosage Feedback   Control

           

          The ultrasound head is   equipped with a feedback control that automatically switches off the timer if   contact with the target and transmission of ultrasound to the target is   compromised. In this case the timer countdown mechanism will cease at the   precise time contact was compromised and an audible alarm will sound.

           

          Custom Features Available

           

          Custom features may be   supplied

           

          SPECIFICATIONS

          Frequency:

          Continuous and pulsed   ultrasound at an optimally pre-set precise frequency of 1 MHz.

          Display:

          Intensity in W/cm2 (SATP*)

          Contact control threshold:

          65 %

          Treatment time display and   control buttons:

          0 – 90 seconds and then switches to minutes (2-60), coupled to contact   control. For enhanced operator control and feedback, the time display will   stop counting down if adequate acoustic ultrasound contact with the target is   compromised. This allows the operator to identify the precise time to which   the target was-exposed to ultrasound in the event of a failure in contact   between the ultrasound head and the target

          Ultrasound, continuous:

          Pulse frequency / duty cycle

          Power density/intensity (Output)

          .

          100 Hz / 100 %

          0 – 5 W/cm2, adjustable in 0.1 Wcm2   increments

          Ultrasound, pulsed:

          Pulse frequency / duty cycle

          Power density/intensity (Output)

          .

          100 Hz / 5-100 % in 5% increments

          0 – 5 W/cm2, adjustable in 0.1 Wcm2   increments

          Treatment head:1 MHz, Standard

          Geometric surface area   1.5cm2, Diameter 1.38cm, ERA** 0.8cm2, BNR*** max. 6 type collimating, side   panel radiation max. 10 mW/cm2

          Mains adapter:

          Mains voltage

          Frequency

          Max, Power consumption

          .

          100 – 240 Volt

          50/60 Hz

          40 VA

          Safety class:

          *II according to IEC 60601-1

          Dimensions:

          220 x 200 x 195 mm

          Weight:

          1.7 kg

          CE marking:

          ****

          Safety standards:

          IEC 60601-1 and IEC   60601-2-5

          Environment conditions for   Transport and Storage:

          Environment temperature

          Relative humidity

          Atmospheric pressure

          ..……………………………………………………………………………………

          -10° till +50° C

          10 till 100 %

          500 till 1060 hPa

          Environment conditions   normal use:

          Environment temperature

          Relative humidity

          Atmospheric pressure

          ………………………………………………………………………………………….

          10° till 40° C

          10 till 90 % (non condensing)

          500 till 1060 hPa

          *

          ***

          ***

          *II

          ****

          SATP = Spatial Average   Temporal Peak (average pulse power)

          ERA = Effective Radiating Area, this is the   effective radiating area of the treatment head

          BNR = Beam Nonuniformity Ratio, indicates the ratio   between the peaks and the average value of the intensity in the sound beam. A   low BNR excludes high, unwanted energy concentrations

          Safety class II (double insulated)

          According to European requirement 93/42 EEC

          SONIDEL MB101? Microbubble 

          Optimised for enhanced ultrasound-mediated gene transfer

          • Polymer-stabilized, lipid-based microbubble

          • Neutral surface charge and PEGylated for reduced non-specific binding      

          • Sterile, liquid preparation

          • Ready to use with no requirement for specialised mixing devices

          • Stable for 6 months at 40C

          • Optimized for use with the SONIDEL SP100 sonoporator

          • Designed specifically for ultrasound-mediated gene transfection /      Nucleic Acid Transfer using in vivo and in vitro target      systems

          • Non-invasive stimulation of gene transfer

          • Efficient gene/nucleic acid transfer

          • In vivo and in vitro applications

          • Compatible for use with plasmids and minicircle DNA

          • Minimal impact on cell/tissue viability

          • Supplied      as part of the SONIDEL STK10      ultrasound transfection kit or as individual pack.

           

          Non-invasive targeted gene transfer/expression of the firefly   luciferase gene in an Opticell-based configuration using ultrasound   (sonoporation)

          .

           

          .

          Ultrasound may be employed to achieve targeted expression of a   transgene either in vitro orin vivo. The data above   indicate the targeting capabilities of the SONIDEL SP100 platform.

          Cells have been plated throughout the window of the unit above   and microbubbles together with luciferase-encoding naked plasmid DNA have   been added. Areas-exhibiting luciferase activity have been treated with   ultrasound externally applied to the unit. The data indicate both the   non-invasive nature of the ultrasound-based stimulus AND the site-specific   nature of gene transfer/expression.

          System advantages

          ·           Target   cells covered the complete Opticell membrane surface and positions treated   with ultrasound are non-destructively visualised by photonic imaging.

           

          ·           Non-invasive   specific spatial targeting of gene transfer to pre-defined sites on the   membrane are clearly visible

           

          ·           Gene   expression may be quantified directly using photonic imaging or by excision   of the membrane and recovery of the cells.

           

          ·           Gene   expression may also be visualised and mapped using fluorescence microscopy if   a GFP-based reporter is employed.

          See also ultrasound-mediated specific targeting of gene expression in vivo

           

          SP100 Publications

           

          2017

          A versatile, stimulus-responsive nanoparticle-based platform   for use in both sonodynamic and photodynamic cancer therapy

          Nomikou   N, Curtis K, McEwan C, O'Hagan BM, Callan B, Callan JF, McHale AP.

          Acta   Biomater. 2017 Feb;49:414-421. doi: 10.1016/j.actbio.2016.11.031. Epub 2016   Nov 14.

          2017

          Ultrasound-responsive gene-activated matrices for osteogenic   gene therapy using matrix-assisted sonoporation

          Nomikou   N, Feichtinger GA, Saha S, Nuernberger S, Heimel P, Redl H, McHale AP.

          J   Tissue Eng Regen Med. 2017 Jan 13. doi: 10.1002/term.2406. [Epub ahead of   print]

           

           

          2016

          Development of a novel microbubble-liposome complex conjugated   with peptide ligands targeting IL4R on brain tumor cells

          Park   SH, Yoon YI, Moon H, Lee GH, Lee BH, Yoon TJ, Lee HJ

          Oncol   Rep. 2016 Jul;36(1):131-6. doi: 10.3892/or.2016.4836. Epub 2016 May 24.

          2016

          Comparing the efficacy of photodynamic and sonodynamic therapy   in non-melanoma and melanoma skin cancer

          McEwan   C, Nesbitt H, Nicholas D, Kavanagh ON, McKenna K, Loan P, Jack IG, McHale AP,   Callan JF

          Bioorg   Med Chem. 2016 Jul 1;24(13):3023-8. doi: 10.1016/j.bmc.2016.05.015. Epub 2016   May 12.

           

          2016

          Combined sonodynamic and antimetabolite therapy for the   improved treatment of pancreatic cancer using oxygen loaded microbubbles as a   delivery vehicle

          McEwan   C, Kamila S, Owen J, Nesbitt H, Callan B, Borden M, Nomikou N, Hamoudi RA,   Taylor MA, Stride E, McHale AP, Callan JF

          omaterials.   2016 Feb;80:20-32. doi: 10.1016/j.biomaterials.2015.11.033. Epub 2015 Nov 26.

          2016

          Complex interfaces in “phase-change” contrast agents

          Capece   S, Domenici F, Brasili F, Oddo L, Cerroni B, Bedini A, Bordi F, Chiessi E,   Paradossi G

          Phys   Chem Chem Phys. 2016 Mar 28;18(12):8378-88. doi: 10.1039/c5cp07538f.

          2016

          Ultrasound-mediated gene transfer (sonoporation) in   fibrin-based matrices: potential for use in tissue regeneration

          Nomikou   N, Feichtinger GA, Redl H, McHale AP.

          J   Tissue Eng Regen Med. 2016 Jan;10(1):29-39. doi: 10.1002/term.1730. Epub 2013   Apr 17

           

           

          2015

          Utilizing Ultrasound to Transiently Increase Blood-Brain   Barrier Permeability, Modulate of the Tight Junction Proteins, and Alter   Cytoskeletal Structure

          Bae   MJ, Lee YM, Kim YH, Han HS, Lee H

          J   Curr Neurovasc Res. 2015;12(4):375-83

           

          2015

          Sonoporation efficacy on SiHa cells in vitro at raised bath   temperatures—experimental validation of a prototype sonoporation device

          Kivinen   J, Togtema M, Mulzer G, Choi J, Zehbe I, Curiel L, Pichardo S

          J   Ther Ultrasound. 2015 Nov 6;3:19. doi: 10.1186/s40349-015-0040-9. eCollection   2015.

          2015

          Optimization of ultrasound parameters for   microbubble-nanoliposome complex-mediated delivery

          Yoon   YI, Yoon TJ, Lee HJ

          Ultrasonography.   2015 Oct;34(4):297-303. doi: 10.14366/usg.15009. Epub 2015 Apr 22.

           

          2015

          Oxygen carrying microbubbles for enhanced sonodynamic therapy   of hypoxic tumours

          McEwan   C, Owen J, Stride E, Fowley C, Nesbitt H, Cochrane D, Coussios CC, Borden M,   Nomikou N, McHale AP, Callan JF

          J   Control Release. 2015 Apr 10;203:51-6. doi: 10.1016/j.jconrel.2015.02.004.   Epub 2015 Feb 4.

           

          2015

          Open-source, high-throughput ultrasound treatment chamber

          Yddal   T, Cochran S, Gilja OH, Postema M, Kotopoulis S

          Biomed   Tech (Berl). 2015 Feb;60(1):77-87. doi: 10.1515/bmt-2014-0046.

           

           

          2014

          Ultrasound-mediated gene delivery of naked plasmid DNA in   skeletal muscles: A case for bolus injections

          Sanches   PG, Mühlmeister M, Seip R, Kaijzel E, L?wik C, B?hmer M, Tiemann K, Grüll H

          J   Control Release. 2014 Dec 10;195:130-7. doi: 10.1016/j.jconrel.2014.06.033.   Epub 2014 Jun 28.

           

          2014

          Comparing Efficiency of micro-RNA and mRNA Biomarker   Liberation with Microbubble-Enhanced Ultrasound Exposure

          Forbrich   A, Paproski R, Hitt M, Zemp R

          Ultrasound   Med Biol. 2014 Sep;40(9):2207-16. doi: 10.1016/j.ultrasmedbio.2014.05.005.   Epub 2014 Jul 9.

           

          2014

          RNA Biomarker Release with Ultrasound and Phase-Change   Nanodroplets

          Paproski   RJ, Forbrich A, Hitt M, Zemp R.

          Ultrasound   Med Biol. 2014 Aug;40(8):1847-56. doi: 10.1016/j.ultrasmedbio.2014.01.011.   Epub 2014 May 2.

           

          2014

          Sonoporation Increases Therapeutic Efficacy of Inducible and   Constitutive BMP2/7 In Vivo Gene Delivery

          Feichtinger   GA, Hofmann AT, Slezak P, Schuetzenberger S, Kaipel M, Schwartz E, Neef A,   Nomikou N, Nau T, van Griensven M, McHale AP, Redl

          H.Hum   Gene Ther Methods. 2014 Feb;25(1):57-71. doi: 10.1089/hgtb.2013.113. Epub   2013 Nov 27.

          2014

          A Device for Performing Sonoporation on Adherent Cell Cultures

          Jonathan    Kivinen,

          Lakehead   University, Knowledge Commons, Electronic Theses and Dissertations

           

           

          2013

          Coupling of drug containing liposomes to microbubbles improves   ultrasound triggered drug delivery in mice

          Cool   SK, Geers B, Roels S, Stremersch S, Vanderperren K, Saunders JH, De Smedt SC,   Demeester J, Sanders NN.

          J   Control Release. 2013 Dec 28;172(3):885-93. doi:   10.1016/j.jconrel.2013.09.014. Epub 2013 Sep 25.

           

          2013

          Human Concentrative Nucleoside Transporter 3 Transfection with   Ultrasound and Microbubbles in Nucleoside Transport Deficient HEK293 Cells   Greatly Increases Gemcitabine Uptake

          Paproski   RJ, Yao SY, Favis N, Evans D, Young JD, Cass CE, Zemp RJ.

          PLoS   One. 2013;8(2):e56423. doi: 10.1371/journal.pone.0056423. Epub 2013 Feb 18.

           

          2013

          Microbubble-Enhanced Ultrasound Liberation of mRNA Biomarkers   In Vitro

          Forbrich   A, Paproski R, Hitt M, Zemp R.

          Ultrasound   Med Biol. 2013 Jun;39(6):1087-93. doi: 10.1016/j.ultrasmedbio.2012.12.015.   Epub 2013 Apr 3.

          2013

          Ultrasound-based molecular imaging and specific gene delivery   to mesenteric vasculature by endothelial adhesion molecule targeted   microbubbles in a mouse model of Crohn's disease

          Tlaxca   JL, Rychak JJ, Ernst PB, Konkalmatt PR, Shevchenko TI, Pizarro TT,   Rivera-Nieves J, Klibanov AL, Lawrence MB

          J   Control Release. 2013 Feb 10;165(3):216-25. doi:   10.1016/j.jconrel.2012.10.021. Epub 2012 Nov 8.

          2013

          Chapter 5: Delivery of small molecules with liposome-loaded   microbubbles to tumors in vivo: a pilot study

          Bart   Geers, Steven K. Cool, Joseph Demeester, Stefaan C. De Smedt, Niek N.   Sanders, Ine Lentacker

           

          2013

          Enhancing Nucleic Acid Delivery with Ultrasound and   Microbubbles

          Cool   SK, Geers B, Lentacker I, De Smedt SC, Sanders NN

          Methods   Mol Biol. 2013;948:195-204. doi: 10.1007/978-1-62703-140-0_14

           

           

           

          2012

          Characterisation of the acoustic output of three sonoporation   drug delivery ultrasound systems using an acoustic radiation force balance

          Tapihwa   Mabvaro, Jacinta Browne

          European   Journal of Medical Physics, October 2012, Volume 28, Issue 4, Page 343

           

          2012

          Microbubble–sonosensitiser conjugates as therapeutics in   sonodynamic therapy

          Nomikou   N, Fowley C, Byrne NM, McCaughan B, McHale AP, Callan JF.

          Chem   Commun (Camb). 2012 Aug 28;48(67):8332-4. doi: 10.1039/c2cc33913g. Epub 2012   Jul 13.

           

          2012

          Microbubble-sonosensitiser conjugates as therapeutics in   sonodynamic therapy

          Nomikou   N, Fowley C, Byrne NM, McCaughan B, McHale AP, Callan JF

          Chem   Commun (Camb). 2012 Aug 28;48(67):8332-4. doi: 10.1039/c2cc33913g. Epub 2012   Jul 13.

          2012

          The effects of ultrasound and light on   indocyanine-green-treated tumour cells and tissues

          Nomikou   N, Sterrett C, Arthur C, McCaughan B, Callan JF, McHale AP.

          ChemMedChem.   2012 Aug;7(8):1465-71. doi: 10.1002/cmdc.201200233. Epub 2012 Jun 19.

          2012

          Microbubble-enhanced ultrasound-mediated gene transfer -   Towards the development of targeted gene therapy for cancer

          Nomikou   N, McHale AP.

          Int   J Hyperthermia. 2012;28(4):300-10. doi: 10.3109/02656736.2012.659235.

           

          2012

          Studies on neutral, cationic and biotinylated cationic   microbubbles in enhancing ultrasound-mediated gene delivery in vitro and in   vivo

          Nomikou   N, Tiwari P, Trehan T, Gulati K, McHale AP

          Acta   Biomater. 2012 Mar;8(3):1273-80. doi: 10.1016/j.actbio.2011.09.010. Epub 2011   Sep 10.

           

          2012

          A low-cost intracellular delivery system based on microbubble   and high gravity field

          He   C1, Gu Q, Huang M, Yang X, Xing J, Chen J.

          Conf   Proc IEEE Eng Med Biol Soc. 2012;2012:2424-7. doi: 10.1109/EMBC.2012.6346453.

           

          2012

          Chapter III - Evaluation of non-viral BMP2/7 in vivo gene   transfer for ectopic and orthotopic osteoinduction

          G.   A. Feichtinger

           

          2011

          Enhanced ROS production and cell death through combined photo-   and sono-activation of conventional photosensitising drugs

          McCaughan   B, Rouanet C, Fowley C, Nomikou N, McHale AP, McCarron PA, Callan JF.

          Bioorg   Med Chem Lett. 2011 Oct 1;21(19):5750-2. doi: 10.1016/j.bmcl.2011.08.015.   Epub 2011 Aug 10.

           

          2011

          Targeted Transfection Mediated by Microbubbles and Ultrasound   in Inflammatory Bowel Disease

          Tlaxca,   Jose Luis

          ProQuest   Dissertations and Theses; 2011; ProQuest Dissertations & Theses (PQDT)

           

           

           

          2010

          Analysis of in vitro Transfection by Sonoporation Using   Cationic and Neutral Microbubbles

          Tlaxca   JL, Anderson CR, Klibanov AL, Lowrey B, Hossack JA, Alexander JS, Lawrence   MB, Rychak JJ

          Ultrasound   Med Biol. 2010 Nov;36(11):1907-18. doi: 10.1016/j.ultrasmedbio.2010.05.014.

           

          2010

          Exploiting ultrasound-mediated effects in delivering targeted,   site-specific cancer therapy

          Nomikou   N, McHale AP.

          Cancer   Lett. 2010 Oct 28;296(2):133-43. doi: 10.1016/j.canlet.2010.06.002. Epub 2010   Jul 3.

           

          2010

          Ultrasound-enhanced drug dispersion through solid tumours and   its possible role in aiding ultrasound-targeted cancer chemotherapy

          Nomikou   N et al.

          Cancer   Lett. 2010 Feb 1;288(1):94-8. doi: 10.1016/j.canlet.2009.06.028. Epub 2009   Aug 11.

          2010

          Targeted Ultrasound-Mediated Delivery of Nanoparticles: On the   Development of a New HIFU-Based Therapy and Imaging Device

          Seip   R, Chin CT, Hall CS, Raju BI, Ghanem A, Tiemann K.

          IEEE   Trans Biomed Eng. 2010 Jan;57(1):61-70. doi: 10.1109/TBME.2009.2028874. Epub   2009 Aug 18.

          2010

          Ultrasound activation of TiO2 in melanoma tumors

          Harada   Y, Ogawa K, Irie Y, Endo H, Feril LB Jr, Uemura T, Tachibana K.

          J   Control Release. 2011 Jan 20;149(2):190-5.

          doi:10.1016/j.jconrel.2010.10.012.   Epub 2010 Oct 15

           

          2010

          Ultrasound-mediated Non-invasive Gene Transfer

          Nikolitsa   Nomikou,1 Anthony P. McHale,2

          Termis.org

           

           

           

          2009

          Optimising ultrasound-mediated gene transfer (sonoporation) in   vitro and prolonged expression of a transgene in vivo: Potential applications   for gene therapy of cancer

          Li   YS, Davidson E, Reid CN, McHale AP

          Cancer   Lett. 2009 Jan 8;273(1):62-9. doi: 10.1016/j.canlet.2008.07.030. Epub 2008   Oct 1.

           

           

           

          2008

          Enhancing ultrasound-mediated cell membrane permeabilisation   (sonoporation) using a high frequency pulse regime and implications for   ultrasound-aided cancer chemotherapy

          Li   YS, Reid CN, McHale AP

          Cancer   Lett. 2008 Aug 8;266(2):156-62. doi: 10.1016/j.canlet.2008.02.041. Epub 2008   Mar 25.

           

          Gene Transfer:

          ·Optimising ultrasound-mediated gene transfer (sonoporation) in vitro and prolonged expression of a transgene in vivo: Potential applications for gene therapy of cancer

          Ultrasound Permeation on Drug Delivery:

          ·Ultrasound-enhanced drug dispersion through solid tumours and its possible role in aiding ultrasound-targeted cancer chemotherapy

          ·Enhancing ultrasound-mediated cell membrane permeabilisation (sonoporation) using a high frequency pulse regime and implications for ultrasound-aided cancer chemotherapy

          Sonodynamic Therapy:

          ·Enhanced ROS production and cell death through combined photo- and sono-activation of conventional photosensitising drugs.

          ·The effects of ultrasound and light on indocyanine-green-treated tumour cells and tissues

          ·Microbubble-sonosensitiser conjugates as therapeutics in sonodynamic therapy

          ·Ultrasound activation of TiO2 in melanoma tumors

          ·Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumours

          SONIDEL Reviews:

          Exploiting ultrasound-mediated effects in delivering targeted, site-specific cancer therapy

          ·Microbubble-enhanced ultrasound-mediated gene transfer - Towards the development of targeted gene therapy for cancer.

          收藏該商鋪

          登錄 后再收藏

          提示

          您的留言已提交成功!我們將在第一時間回復(fù)您~

          對比框

          產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 意見反饋 在線交流

          掃一掃訪問手機(jī)商鋪
          86-010-67529703
          在線留言
          达拉特旗| 兴国县| 泾阳县| 仙游县| 全南县| 广水市| 克什克腾旗| 通城县| 疏附县| 黎平县| 蓬莱市| 扶风县| 禄劝| 缙云县| 城口县| 法库县| 翼城县| 来凤县| 厦门市| 长宁县| 南通市| 武川县| 宁明县| 襄汾县| 禹城市| 三门峡市| 江油市| 鹿邑县| 石门县| 大城县| 墨脱县| 阳高县| 惠水县| 阳西县| 齐齐哈尔市| 宾川县| 海淀区| 遂宁市| 镇赉县| 湘乡市| 昂仁县|