詳細(xì)介紹
SONIDEL SP100 Sonoporation Platform,體外體內(nèi)超聲轉(zhuǎn)染系統(tǒng)
In vitro gene transfer using the SONIDEL Ultrasound Transfection platform
使用SONIDEL超聲轉(zhuǎn)染平臺體外基因轉(zhuǎn)染
聲穿孔已成為基因的功能研究領(lǐng)域中*的技術(shù)手段
----適用于基因轉(zhuǎn)染(gene transfection)和藥物轉(zhuǎn)運(yùn)(drug delivery)
GTS超聲波轉(zhuǎn)染儀采用超聲波原理,具有安全性、可靠性、靈活性、高效性。適用于臨床試驗(yàn)研究中的基因轉(zhuǎn)染(gene transfection)和藥物轉(zhuǎn)運(yùn)(drug delivery)領(lǐng)域。
主要特點(diǎn):
o安全性:因?yàn)槌暡梢詰?yīng)用于臨床,所以儀器采用超聲波原理轉(zhuǎn)染,可以保證后期臨床試驗(yàn)研究的安全性。
o靈活性:超聲波轉(zhuǎn)染儀的傳感器模塊具有自我校正功能,此模塊可以更換。
o可用于聚焦超聲研究(FUS):具有高強(qiáng)度聚焦超聲傳感器模塊。
o可以結(jié)合微泡使用:儀器結(jié)合微泡(Microbubbles)使用,可以提高轉(zhuǎn)染效率;并且使用特殊的微泡(如Targesphere SA)可以靶向特定細(xì)胞。
應(yīng)用范圍:
適用于動物細(xì)胞的體外轉(zhuǎn)染,以及動物體內(nèi)轉(zhuǎn)染(包括子宮內(nèi)或卵巢內(nèi)等)。
1.原代細(xì)胞和細(xì)胞株系,如:HFLS-RA, Hela, KATOⅢ, MKN-45, CHO, NIH/3T3, HL-60, C1271, T24, Mouse ascites, Rat bladder, PC3, U937等。
2.小鼠(Mouse)的大腦、肺、肝臟、腎臟、脾臟、血管、脊髓、皮膚、齒齦、腹膜、關(guān)節(jié)、足墊、耳朵等。
3.小鼠胚胎(Mouse Fetal)的大腦、肺、心臟、肝臟、腸、羊膜等。
4.大鼠(Rat)的小腸、大腸、唾腺、視網(wǎng)膜、角膜。
5.家兔(Rabbit)的視網(wǎng)膜、角膜等。
6.蜜蜂(Bee)的大腦等。
7.非洲爪蟾蜍(Xenopus)。
8.家蠶(Silkworm)的血細(xì)胞、絲腺、中腸、脂肪墊、馬氏管、卵巢、睪丸等。
SONIDEL SP100? - Optimised for enhanced ultrasound-mediated gene transfer
oIn Vitro, In Vivo, Ex Vivo, In Ovo transfection / nucleic acid transfer
oOptimised pre-set ultrasound output programs for use with SONIDEL STK10? Transfection Kit and SONIDEL MB101? Microbubble
oPrecision engineered in Europe
oUser friendly
oSelf-contained robust ultrasound head
oUltrasound head compatible with direct insertion into tissue culture medium
oA genuine cost break-through device
oCE marked
oElectrical and ultrasound safety comply fully with IEC safety standards .
SONIDEL SP100? with SONIDEL STK10? Kit (including SONIDEL MB101? Microbubble) Photographic Results
Plasmid DNA – pCMV-Luc | Minicircle DNA – MC07.CMV-luc | ||||||
|
| ||||||
MB+DNA | MB+DNA+US | DNA+US | MB+DNA | MB+DNA+US | DNA+US | ||
Plus MB101 | No MB101 | Plus MB101 | No MB101 | ||||
.Larger Image | Larger Image |
Luciferase Expression using MB101 In Vivo (pCMV-luc and MC07.CMV-luc)
Adherent Cells in Opticell ?
FEATURES | |
Output Frequency
Output frequency is fixed at precisely 1 MHz for optimised and reproducible penetration of ultrasound through tissue culture vessels and tissue-based targets.
Ultrasound Power/Density Options
Ultrasound power density/intensity options between 0 and 5 W/cm2 with adjustments of 0.1 W/cm2.
Duty Cycle Range
A wide range of duty cycles ranging from 5 – * in 5% increments and emitting at a pulse frequency of 100 Hz. Automated Treatment Control Time Automated control of treatment time that may be adjusted in seconds up to a treatment time of 90 seconds and thereafter in minutes up to a treatment time of 60 minutes.
Water-sealed Ultrasound head
The ultrasound head is water-sealed and compatible with operational immersion in liquid. | Pre-programmed Treatment Parameters
Supplied with 10 Operating Programs, 5 of which are pre-programmed to the appropriate treatment parameters to achieve optimal ultrasound-mediated transfection with the SONIDEL STK? 10 Positive Control Transfection Kit. The other 5 programs may be adjusted to the specific conditions chosen by the operator
Ultrasound Dosage Feedback Control
The ultrasound head is equipped with a feedback control that automatically switches off the timer if contact with the target and transmission of ultrasound to the target is compromised. In this case the timer countdown mechanism will cease at the precise time contact was compromised and an audible alarm will sound.
Custom Features Available
Custom features may be supplied |
SPECIFICATIONS
Frequency: | Continuous and pulsed ultrasound at an optimally pre-set precise frequency of 1 MHz. |
Display: | Intensity in W/cm2 (SATP*) |
Contact control threshold: | 65 % |
Treatment time display and control buttons: | 0 – 90 seconds and then switches to minutes (2-60), coupled to contact control. For enhanced operator control and feedback, the time display will stop counting down if adequate acoustic ultrasound contact with the target is compromised. This allows the operator to identify the precise time to which the target was-exposed to ultrasound in the event of a failure in contact between the ultrasound head and the target |
Ultrasound, continuous: Pulse frequency / duty cycle Power density/intensity (Output) | . 100 Hz / 100 % 0 – 5 W/cm2, adjustable in 0.1 Wcm2 increments |
Ultrasound, pulsed: Pulse frequency / duty cycle Power density/intensity (Output) | . 100 Hz / 5-100 % in 5% increments 0 – 5 W/cm2, adjustable in 0.1 Wcm2 increments |
Treatment head:1 MHz, Standard | Geometric surface area 1.5cm2, Diameter 1.38cm, ERA** 0.8cm2, BNR*** max. 6 type collimating, side panel radiation max. 10 mW/cm2 |
Mains adapter: Mains voltage Frequency Max, Power consumption | . 100 – 240 Volt 50/60 Hz 40 VA |
Safety class: | *II according to IEC 60601-1 |
Dimensions: | 220 x 200 x 195 mm |
Weight: | 1.7 kg |
CE marking: | **** |
Safety standards: | IEC 60601-1 and IEC 60601-2-5 |
Environment conditions for Transport and Storage: Environment temperature Relative humidity Atmospheric pressure | ..…………………………………………………………………………………… -10° till +50° C 10 till 100 % 500 till 1060 hPa |
Environment conditions normal use: Environment temperature Relative humidity Atmospheric pressure | …………………………………………………………………………………………. 10° till 40° C 10 till 90 % (non condensing) 500 till 1060 hPa |
* *** *** *II **** | SATP = Spatial Average Temporal Peak (average pulse power) ERA = Effective Radiating Area, this is the effective radiating area of the treatment head BNR = Beam Nonuniformity Ratio, indicates the ratio between the peaks and the average value of the intensity in the sound beam. A low BNR excludes high, unwanted energy concentrations Safety class II (double insulated) According to European requirement 93/42 EEC |
SONIDEL MB101? Microbubble
Optimised for enhanced ultrasound-mediated gene transfer
Polymer-stabilized, lipid-based microbubble
Neutral surface charge and PEGylated for reduced non-specific binding
Sterile, liquid preparation
Ready to use with no requirement for specialised mixing devices
Stable for 6 months at 40C
Optimized for use with the SONIDEL SP100 sonoporator
Designed specifically for ultrasound-mediated gene transfection / Nucleic Acid Transfer using in vivo and in vitro target systems
Non-invasive stimulation of gene transfer
Efficient gene/nucleic acid transfer
In vivo and in vitro applications
Compatible for use with plasmids and minicircle DNA
Minimal impact on cell/tissue viability
Supplied as part of the SONIDEL STK10 ultrasound transfection kit or as individual pack.
Non-invasive targeted gene transfer/expression of the firefly luciferase gene in an Opticell-based configuration using ultrasound (sonoporation) . |
. |
Ultrasound may be employed to achieve targeted expression of a transgene either in vitro orin vivo. The data above indicate the targeting capabilities of the SONIDEL SP100 platform. Cells have been plated throughout the window of the unit above and microbubbles together with luciferase-encoding naked plasmid DNA have been added. Areas-exhibiting luciferase activity have been treated with ultrasound externally applied to the unit. The data indicate both the non-invasive nature of the ultrasound-based stimulus AND the site-specific nature of gene transfer/expression. |
System advantages · Target cells covered the complete Opticell membrane surface and positions treated with ultrasound are non-destructively visualised by photonic imaging.
· Non-invasive specific spatial targeting of gene transfer to pre-defined sites on the membrane are clearly visible
· Gene expression may be quantified directly using photonic imaging or by excision of the membrane and recovery of the cells.
· Gene expression may also be visualised and mapped using fluorescence microscopy if a GFP-based reporter is employed. |
See also ultrasound-mediated specific targeting of gene expression in vivo |
SP100 Publications
2017 | A versatile, stimulus-responsive nanoparticle-based platform for use in both sonodynamic and photodynamic cancer therapy Nomikou N, Curtis K, McEwan C, O'Hagan BM, Callan B, Callan JF, McHale AP. Acta Biomater. 2017 Feb;49:414-421. doi: 10.1016/j.actbio.2016.11.031. Epub 2016 Nov 14. |
2017 | Ultrasound-responsive gene-activated matrices for osteogenic gene therapy using matrix-assisted sonoporation Nomikou N, Feichtinger GA, Saha S, Nuernberger S, Heimel P, Redl H, McHale AP. J Tissue Eng Regen Med. 2017 Jan 13. doi: 10.1002/term.2406. [Epub ahead of print] |
|
|
2016 | Development of a novel microbubble-liposome complex conjugated with peptide ligands targeting IL4R on brain tumor cells Park SH, Yoon YI, Moon H, Lee GH, Lee BH, Yoon TJ, Lee HJ Oncol Rep. 2016 Jul;36(1):131-6. doi: 10.3892/or.2016.4836. Epub 2016 May 24. |
2016 | Comparing the efficacy of photodynamic and sonodynamic therapy in non-melanoma and melanoma skin cancer McEwan C, Nesbitt H, Nicholas D, Kavanagh ON, McKenna K, Loan P, Jack IG, McHale AP, Callan JF Bioorg Med Chem. 2016 Jul 1;24(13):3023-8. doi: 10.1016/j.bmc.2016.05.015. Epub 2016 May 12.
|
2016 | Combined sonodynamic and antimetabolite therapy for the improved treatment of pancreatic cancer using oxygen loaded microbubbles as a delivery vehicle McEwan C, Kamila S, Owen J, Nesbitt H, Callan B, Borden M, Nomikou N, Hamoudi RA, Taylor MA, Stride E, McHale AP, Callan JF omaterials. 2016 Feb;80:20-32. doi: 10.1016/j.biomaterials.2015.11.033. Epub 2015 Nov 26. |
2016 | Complex interfaces in “phase-change” contrast agents Capece S, Domenici F, Brasili F, Oddo L, Cerroni B, Bedini A, Bordi F, Chiessi E, Paradossi G Phys Chem Chem Phys. 2016 Mar 28;18(12):8378-88. doi: 10.1039/c5cp07538f. |
2016 | Ultrasound-mediated gene transfer (sonoporation) in fibrin-based matrices: potential for use in tissue regeneration Nomikou N, Feichtinger GA, Redl H, McHale AP. J Tissue Eng Regen Med. 2016 Jan;10(1):29-39. doi: 10.1002/term.1730. Epub 2013 Apr 17 |
|
|
2015 | Utilizing Ultrasound to Transiently Increase Blood-Brain Barrier Permeability, Modulate of the Tight Junction Proteins, and Alter Cytoskeletal Structure Bae MJ, Lee YM, Kim YH, Han HS, Lee H J Curr Neurovasc Res. 2015;12(4):375-83
|
2015 | Sonoporation efficacy on SiHa cells in vitro at raised bath temperatures—experimental validation of a prototype sonoporation device Kivinen J, Togtema M, Mulzer G, Choi J, Zehbe I, Curiel L, Pichardo S J Ther Ultrasound. 2015 Nov 6;3:19. doi: 10.1186/s40349-015-0040-9. eCollection 2015. |
2015 | Optimization of ultrasound parameters for microbubble-nanoliposome complex-mediated delivery Yoon YI, Yoon TJ, Lee HJ Ultrasonography. 2015 Oct;34(4):297-303. doi: 10.14366/usg.15009. Epub 2015 Apr 22.
|
2015 | Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumours McEwan C, Owen J, Stride E, Fowley C, Nesbitt H, Cochrane D, Coussios CC, Borden M, Nomikou N, McHale AP, Callan JF J Control Release. 2015 Apr 10;203:51-6. doi: 10.1016/j.jconrel.2015.02.004. Epub 2015 Feb 4.
|
2015 | Open-source, high-throughput ultrasound treatment chamber Yddal T, Cochran S, Gilja OH, Postema M, Kotopoulis S Biomed Tech (Berl). 2015 Feb;60(1):77-87. doi: 10.1515/bmt-2014-0046. |
|
|
2014 | Ultrasound-mediated gene delivery of naked plasmid DNA in skeletal muscles: A case for bolus injections Sanches PG, Mühlmeister M, Seip R, Kaijzel E, L?wik C, B?hmer M, Tiemann K, Grüll H J Control Release. 2014 Dec 10;195:130-7. doi: 10.1016/j.jconrel.2014.06.033. Epub 2014 Jun 28.
|
2014 | Comparing Efficiency of micro-RNA and mRNA Biomarker Liberation with Microbubble-Enhanced Ultrasound Exposure Forbrich A, Paproski R, Hitt M, Zemp R Ultrasound Med Biol. 2014 Sep;40(9):2207-16. doi: 10.1016/j.ultrasmedbio.2014.05.005. Epub 2014 Jul 9.
|
2014 | RNA Biomarker Release with Ultrasound and Phase-Change Nanodroplets Paproski RJ, Forbrich A, Hitt M, Zemp R. Ultrasound Med Biol. 2014 Aug;40(8):1847-56. doi: 10.1016/j.ultrasmedbio.2014.01.011. Epub 2014 May 2.
|
2014 | Sonoporation Increases Therapeutic Efficacy of Inducible and Constitutive BMP2/7 In Vivo Gene Delivery Feichtinger GA, Hofmann AT, Slezak P, Schuetzenberger S, Kaipel M, Schwartz E, Neef A, Nomikou N, Nau T, van Griensven M, McHale AP, Redl H.Hum Gene Ther Methods. 2014 Feb;25(1):57-71. doi: 10.1089/hgtb.2013.113. Epub 2013 Nov 27. |
2014 | A Device for Performing Sonoporation on Adherent Cell Cultures Jonathan Kivinen, Lakehead University, Knowledge Commons, Electronic Theses and Dissertations |
|
|
2013 | Coupling of drug containing liposomes to microbubbles improves ultrasound triggered drug delivery in mice Cool SK, Geers B, Roels S, Stremersch S, Vanderperren K, Saunders JH, De Smedt SC, Demeester J, Sanders NN. J Control Release. 2013 Dec 28;172(3):885-93. doi: 10.1016/j.jconrel.2013.09.014. Epub 2013 Sep 25.
|
2013 | Human Concentrative Nucleoside Transporter 3 Transfection with Ultrasound and Microbubbles in Nucleoside Transport Deficient HEK293 Cells Greatly Increases Gemcitabine Uptake Paproski RJ, Yao SY, Favis N, Evans D, Young JD, Cass CE, Zemp RJ. PLoS One. 2013;8(2):e56423. doi: 10.1371/journal.pone.0056423. Epub 2013 Feb 18.
|
2013 | Microbubble-Enhanced Ultrasound Liberation of mRNA Biomarkers In Vitro Forbrich A, Paproski R, Hitt M, Zemp R. Ultrasound Med Biol. 2013 Jun;39(6):1087-93. doi: 10.1016/j.ultrasmedbio.2012.12.015. Epub 2013 Apr 3. |
2013 | Ultrasound-based molecular imaging and specific gene delivery to mesenteric vasculature by endothelial adhesion molecule targeted microbubbles in a mouse model of Crohn's disease Tlaxca JL, Rychak JJ, Ernst PB, Konkalmatt PR, Shevchenko TI, Pizarro TT, Rivera-Nieves J, Klibanov AL, Lawrence MB J Control Release. 2013 Feb 10;165(3):216-25. doi: 10.1016/j.jconrel.2012.10.021. Epub 2012 Nov 8. |
2013 | Chapter 5: Delivery of small molecules with liposome-loaded microbubbles to tumors in vivo: a pilot study Bart Geers, Steven K. Cool, Joseph Demeester, Stefaan C. De Smedt, Niek N. Sanders, Ine Lentacker
|
2013 | Enhancing Nucleic Acid Delivery with Ultrasound and Microbubbles Cool SK, Geers B, Lentacker I, De Smedt SC, Sanders NN Methods Mol Biol. 2013;948:195-204. doi: 10.1007/978-1-62703-140-0_14
|
|
|
2012 | Characterisation of the acoustic output of three sonoporation drug delivery ultrasound systems using an acoustic radiation force balance Tapihwa Mabvaro, Jacinta Browne European Journal of Medical Physics, October 2012, Volume 28, Issue 4, Page 343
|
2012 | Microbubble–sonosensitiser conjugates as therapeutics in sonodynamic therapy Nomikou N, Fowley C, Byrne NM, McCaughan B, McHale AP, Callan JF. Chem Commun (Camb). 2012 Aug 28;48(67):8332-4. doi: 10.1039/c2cc33913g. Epub 2012 Jul 13.
|
2012 | Microbubble-sonosensitiser conjugates as therapeutics in sonodynamic therapy Nomikou N, Fowley C, Byrne NM, McCaughan B, McHale AP, Callan JF Chem Commun (Camb). 2012 Aug 28;48(67):8332-4. doi: 10.1039/c2cc33913g. Epub 2012 Jul 13. |
2012 | The effects of ultrasound and light on indocyanine-green-treated tumour cells and tissues Nomikou N, Sterrett C, Arthur C, McCaughan B, Callan JF, McHale AP. ChemMedChem. 2012 Aug;7(8):1465-71. doi: 10.1002/cmdc.201200233. Epub 2012 Jun 19. |
2012 | Microbubble-enhanced ultrasound-mediated gene transfer - Towards the development of targeted gene therapy for cancer Nomikou N, McHale AP. Int J Hyperthermia. 2012;28(4):300-10. doi: 10.3109/02656736.2012.659235.
|
2012 | Studies on neutral, cationic and biotinylated cationic microbubbles in enhancing ultrasound-mediated gene delivery in vitro and in vivo Nomikou N, Tiwari P, Trehan T, Gulati K, McHale AP Acta Biomater. 2012 Mar;8(3):1273-80. doi: 10.1016/j.actbio.2011.09.010. Epub 2011 Sep 10.
|
2012 | A low-cost intracellular delivery system based on microbubble and high gravity field He C1, Gu Q, Huang M, Yang X, Xing J, Chen J. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2424-7. doi: 10.1109/EMBC.2012.6346453.
|
2012 | Chapter III - Evaluation of non-viral BMP2/7 in vivo gene transfer for ectopic and orthotopic osteoinduction G. A. Feichtinger
|
2011 | Enhanced ROS production and cell death through combined photo- and sono-activation of conventional photosensitising drugs McCaughan B, Rouanet C, Fowley C, Nomikou N, McHale AP, McCarron PA, Callan JF. Bioorg Med Chem Lett. 2011 Oct 1;21(19):5750-2. doi: 10.1016/j.bmcl.2011.08.015. Epub 2011 Aug 10.
|
2011 | Targeted Transfection Mediated by Microbubbles and Ultrasound in Inflammatory Bowel Disease Tlaxca, Jose Luis ProQuest Dissertations and Theses; 2011; ProQuest Dissertations & Theses (PQDT)
|
|
|
2010 | Analysis of in vitro Transfection by Sonoporation Using Cationic and Neutral Microbubbles Tlaxca JL, Anderson CR, Klibanov AL, Lowrey B, Hossack JA, Alexander JS, Lawrence MB, Rychak JJ Ultrasound Med Biol. 2010 Nov;36(11):1907-18. doi: 10.1016/j.ultrasmedbio.2010.05.014.
|
2010 | Exploiting ultrasound-mediated effects in delivering targeted, site-specific cancer therapy Nomikou N, McHale AP. Cancer Lett. 2010 Oct 28;296(2):133-43. doi: 10.1016/j.canlet.2010.06.002. Epub 2010 Jul 3.
|
2010 | Ultrasound-enhanced drug dispersion through solid tumours and its possible role in aiding ultrasound-targeted cancer chemotherapy Nomikou N et al. Cancer Lett. 2010 Feb 1;288(1):94-8. doi: 10.1016/j.canlet.2009.06.028. Epub 2009 Aug 11. |
2010 | Targeted Ultrasound-Mediated Delivery of Nanoparticles: On the Development of a New HIFU-Based Therapy and Imaging Device Seip R, Chin CT, Hall CS, Raju BI, Ghanem A, Tiemann K. IEEE Trans Biomed Eng. 2010 Jan;57(1):61-70. doi: 10.1109/TBME.2009.2028874. Epub 2009 Aug 18. |
2010 | Ultrasound activation of TiO2 in melanoma tumors Harada Y, Ogawa K, Irie Y, Endo H, Feril LB Jr, Uemura T, Tachibana K. J Control Release. 2011 Jan 20;149(2):190-5. doi:10.1016/j.jconrel.2010.10.012. Epub 2010 Oct 15
|
2010 | Ultrasound-mediated Non-invasive Gene Transfer Nikolitsa Nomikou,1 Anthony P. McHale,2 Termis.org
|
|
|
2009 | Optimising ultrasound-mediated gene transfer (sonoporation) in vitro and prolonged expression of a transgene in vivo: Potential applications for gene therapy of cancer Li YS, Davidson E, Reid CN, McHale AP Cancer Lett. 2009 Jan 8;273(1):62-9. doi: 10.1016/j.canlet.2008.07.030. Epub 2008 Oct 1.
|
|
|
2008 | Enhancing ultrasound-mediated cell membrane permeabilisation (sonoporation) using a high frequency pulse regime and implications for ultrasound-aided cancer chemotherapy Li YS, Reid CN, McHale AP Cancer Lett. 2008 Aug 8;266(2):156-62. doi: 10.1016/j.canlet.2008.02.041. Epub 2008 Mar 25.
|
Gene Transfer:
·Optimising ultrasound-mediated gene transfer (sonoporation) in vitro and prolonged expression of a transgene in vivo: Potential applications for gene therapy of cancer
Ultrasound Permeation on Drug Delivery:
·Ultrasound-enhanced drug dispersion through solid tumours and its possible role in aiding ultrasound-targeted cancer chemotherapy
·Enhancing ultrasound-mediated cell membrane permeabilisation (sonoporation) using a high frequency pulse regime and implications for ultrasound-aided cancer chemotherapy
Sonodynamic Therapy:
·Enhanced ROS production and cell death through combined photo- and sono-activation of conventional photosensitising drugs.
·The effects of ultrasound and light on indocyanine-green-treated tumour cells and tissues
·Microbubble-sonosensitiser conjugates as therapeutics in sonodynamic therapy
·Ultrasound activation of TiO2 in melanoma tumors
·Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumours
SONIDEL Reviews:
Exploiting ultrasound-mediated effects in delivering targeted, site-specific cancer therapy
·Microbubble-enhanced ultrasound-mediated gene transfer - Towards the development of targeted gene therapy for cancer.