聯(lián)系電話
上海北諾生物科技有限公司
- 聯(lián)系人:
- 周經(jīng)理 劉經(jīng)理
- 電話:
- 021-57730393
- 手機(jī):
- 15800960770
- 傳真:
- 86-021-61496710
- 地址:
- 上海市徐匯區(qū)宜山路520號(hào)中華門大廈18樓D座
- 個(gè)性化:
- www.bnbiotech.com
- 網(wǎng)址:
- www.bnbiotech.com
掃一掃訪問手機(jī)商鋪
人物專訪:2012年諾貝爾物理學(xué)獎(jiǎng)法國塞爾日·阿羅什(Serge Haroche)與美國大衛(wèi)·維因蘭德(David Wineland)
2012-11-25 閱讀(2251)
北京時(shí)間10月9日下午5點(diǎn)45分,2012年諾貝爾物理學(xué)獎(jiǎng)揭曉,法國科學(xué)家塞爾日·阿羅什(Serge Haroche)與美國科學(xué)家大衛(wèi)·維因蘭德(David Wineland)獲獎(jiǎng)。獲獎(jiǎng)理由是“發(fā)現(xiàn)測量和操控單個(gè)量子系統(tǒng)的突破性實(shí)驗(yàn)方法”。
9 October 2012
The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2012 to
Serge Haroche
Collège de France and Ecole Normale Supérieure, Paris, France
and
David J. Wineland
National Institute of Standards and Technology (NIST) and University of Colorado Boulder, CO, USA
"for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems"
Particle control in a quantum world
Serge Haroche and David J. Wineland have independently invented and developed methods for measuring and manipulating individual particles while preserving their quantum-mechanical nature, in ways that were previously thought unattainable.
The Nobel Laureates have opened the door to a new era of experimentation with quantum physics by demonstrating the direct observation of individual quantum particles without destroying them. For single particles of light or matter the laws of classical physics cease to apply and quantum physics takes over. But single particles are not easily isolated from their surrounding environment and they lose their mysterious quantum properties as soon as they interact with the outside world. Thus many seemingly bizarre phenomena predicted by quantum physics could not be directly observed, and researchers could only carry out thought experiments that might in principle manifest these bizarre phenomena.
Through their ingenious laboratory methods Haroche and Wineland together with their research groups have managed to measure and control very fragile quantum states, which were previously thought inaccessible for direct observation. The new methods allow them to examine, control and count the particles.
Their methods have many things in common. David Wineland traps electrically charged atoms, or ions, controlling and measuring them with light, or photons.
Serge Haroche takes the opposite approach: he controls and measures trapped photons, or particles of light, by sending atoms through a trap.
Both Laureates work in the field of quantum optics studying the fundamental interaction between light and matter, a field which has seen considerable progress since the mid-1980s. Their ground-breaking methods have enabled this field of research to take the very first steps towards building a new type of super fast computer based on quantum physics. Perhaps the quantum computer will change our everyday lives in this century in the same radical way as the classical computer did in the last century. The research has also led to the construction of extremely precise clocks that could become the future basis for a new standard of time, with more than hundred-fold greater precision than present-day caesium clocks.
Read more about this year's prize |
Information for the Public Pdf 365 Kb |
Scientific Background Pdf 410 Kb |