詳細介紹
天津市ic厭氧反應器
廢水厭氧生物處理是環(huán)境工程與能源工程中的一項重要技術,是機廢水強力的處理方法之一,過去,它多用于城市污水的污泥、機廢料及其部分高濃度機廢水的處理,在建筑物形式上主要采用普通消化池,由于存在水力停留時間長、機負荷低等缺點,較長時間限制了它在廢水處理中的,20世紀70年代以來,能源短缺日益突出,能能源的廢水厭氧技術受到重視,研究與實踐不斷深入,開發(fā)了各種工藝與設備,大幅度地提高了厭氧反應器內活性污泥的持量,使處理時間大大縮短,效率提高。
IC厭氧反應器是強效厭氧反應器,即內循環(huán)厭氧反應器,相似由2層UASB反應器串聯(lián)而成,用于機高濃度廢水,如,玉米淀粉廢水、檸檬酸廢水、啤酒廢水、土豆加工廢水、酒精廢水。IC 反應器當前在造紙行業(yè)較多的是用各類廢紙作原料的造紙企業(yè),處理的包括實現一般的,通過治理后的,從而達到節(jié)水和治污的雙重。
隨著對 的日益重視,在廢水末端處理方面也進行了大量的資金投入,如在造紙二部和板紙廢水厭氧處理技術的足以證明。廢水的厭氧處理技術以其低、、污泥易于處理等優(yōu)點在廢水處理中正發(fā)揮著越來越大的。
UASB與IC在上大的差別表現在抗沖擊負荷方面,IC可以通過內循環(huán)自動稀釋進水,效了1反應室的進水濃度的穩(wěn)定性。其次是它需要較短的停留時間,對可生化性好的廢水的確是優(yōu)點。大家同意因為IC,抗沖擊負荷,容積負荷高,投資省等許多優(yōu)于UASB的優(yōu)點,是否就應該因此而放棄再選用UASB了呢?
IC缺點尤其在污水可生化性不是太好的情況下,由于水力停留時間比較短去除率遠沒UASB高,增加了耗氧的負擔。另外,IC由于體內循環(huán),別是對進水水質不太穩(wěn)定的,導致IC出水水量不穩(wěn)定,出水水質也相對不穩(wěn)定,時可能還會出現短暫不出水現象,對后序處理工藝是影響的。UASB比IC突出優(yōu)點就是去除率高,出水水質相對穩(wěn)定。但IC優(yōu)點還是很多的,別是對于高SS進水,比UASB明顯優(yōu)點,由于IC上升流速很大,SS不會在反應器內大量積累,污泥可以保持較高活性。對于毒廢水也是如此!
IC溫度的設計完和UASB一樣,在調試上和UASB區(qū)別不大,只是在剛進水調試時盡可能采用水力負荷高些,然后逐步交互提升水力、機負荷,盡可能在負荷提升過程中1反應室上升流速大于10m/小時,但大水力負荷應控制在20m/小時以下,這樣即1反應室污泥床的傳質效果,也避免污泥流失.冬季進水管道及反應器要保溫,因為厭氧菌對溫度波動敏感,對負荷波動適應要相對好的多.其實IC的調試比UASB要好調的多,能調試好UASB的,應該調試好IC沒太大問題.不是因為上升流速大,會不好控制而延長調試周期.IC它對進水水質的要求是相對穩(wěn)定就行,它要求高的上升流速是滿足1反應室污泥床處于膨化狀態(tài),加大傳質效果,IC的高度較高,你不必太擔心會污泥流失,因為內部它兩層三相分離,更何況1反應室產量較大,大部分沼被1反應室分離收集提升到部的水分離包進行與泥水的分離.二反應室量少泥水更易分離沉降.若接種顆粒污泥基本一個月便可達到設計負荷是沒問題的,絮狀污泥可能需三到五個月.
工作原理
它相似由2層UASB反應器串聯(lián)而成。按功能劃分,反應器由下而上共分為5個區(qū):混合區(qū)、1厭氧區(qū)、2厭氧區(qū)、沉淀區(qū)和液分離區(qū)。
1、混合區(qū):反應器底部進水、顆粒污泥和液分離區(qū)回流的泥水混合物效地在此區(qū)混合。
2、 1厭氧區(qū):混合區(qū)形成的泥水混合物進入該區(qū),在高濃度污泥下,大部分機物轉化為沼?;旌弦荷仙骱驼拥膭×覕_動使該反應區(qū)內污泥呈膨脹和流化狀態(tài),加強了泥水表面接觸,污泥由此而保持著高的活性。隨著沼產量的增多,一部分泥水混合物被沼提升部的液分離區(qū)。
3、液分離區(qū):被提升的混合物中的沼在此與泥水分離并導出處理,泥水混合物則沿著回流管返回到下端的混合區(qū),與反應器底部的污泥和進水充分混合,實現了混合液的內部循環(huán)。
4、 2厭氧區(qū):經1厭氧區(qū)處理后的廢水,除一部分被沼提升外,其余的都通過三相分離器進入2厭氧區(qū)。該區(qū)污泥濃度較低,且廢水中大部分機物已在1厭氧區(qū)被降解,因此沼產生量較少。沼通過沼管導入液分離區(qū),對2厭氧區(qū)的擾動很小,這為污泥的停留提供了利條件。
5、沉淀區(qū):2厭氧區(qū)的泥水混合物在沉淀區(qū)進行固液分離,上清液由出水管走,沉淀的顆粒污泥返回2厭氧區(qū)污泥床。
從IC反應器工作原理中可見,反應器通過2層三相分離器來實現SRT>HRT,獲得高污泥濃度;通過大量沼和內循環(huán)的劇烈擾動,使泥水充分接觸,獲得良好的傳質效果。
優(yōu)點
IC 反應器的構造及其工作原理決定了其在控制厭氧處理影響因素方面比其它反應器更具優(yōu)點。
(1)容積負荷高:IC反應器內污泥濃,微生物量大,且存在內循環(huán),傳質,進水機負荷可過普通厭氧反應器的3倍以上。
(2)節(jié)省投資和占地面積:IC 反應器容積負荷率高出普通UASB 反應器3倍左右,其體積相當于普通反應器的1/4—1/3 左右,大大降低了反應器的基建投資;而且IC反應器高徑比很大(一般為4—8),所以占地面積少。
(3)抗沖擊負荷能力強:處理低濃度廢水(COD=2000—3000mg/L)時,反應器內循環(huán)流量可達進水量的2—3 倍;處理高濃度廢水(COD=10000—15000mg/L)時,內循環(huán)流量可達進水量的10—20倍。大量的循環(huán)水和進水充分混合,使原水中的害物質得到充分稀釋,大大降低了毒物對厭氧消化過程的影響。
(4)抗低溫能力強:溫度對厭氧消化的影響主要是對消化速率的影響。IC反應器由于含大量的微生物,溫度對厭氧消化的影響變得不再突出和嚴重。通常IC反應器厭氧消化可在常溫條件(20—25 ℃)下進行,這樣減少了消化保溫的困難,節(jié)省了能量。
(5)具緩沖pH值的能力:內循環(huán)流量相當于1 厭氧區(qū)的出水回流,可利用COD轉化的堿度,對pH值起緩沖,使反應器內pH值保持好的狀態(tài),同時還可減少進水的投堿量。
(6)內部自動循環(huán),不必外加動力:普通厭氧反應器的回流是通過外部加壓實現的,而IC 反應器以自身產生的沼作為提升的動力來實現混合液內循環(huán),不必設泵強制循環(huán),節(jié)省了動力消耗。
(7)性好:利用二UASB串聯(lián)分厭氧處理,可以補償厭氧過程中K s高產生的不利影響。Van Lier在1994年證明,反應器分會降低出水VFA濃度,延長生物停留時間,使反應進行穩(wěn)定。
(8)啟動周期短:IC反應器內污泥活性高,生物增殖快,為反應器快速啟動提供利條件。IC反應器啟動周期一般為1~2個月,而普通UASB啟動周期長達4~6個月[7]。
(9)沼利用價值高:反應器產生的生物純,CH4為70%~80%,CO2為20%~30%,其它機物為1%~5%,可作為燃料加以利用
適用范圍
IC厭氧反應器是一種強效的多內循環(huán)反應器,為三代厭氧反應器的代表類型(UASB為二代厭氧反應器的代表類型),與二代厭氧反應器相比,它具占地少、機負荷高、抗沖擊能力更強,性能更穩(wěn)定、操作管理更簡單。當COD為10000-15000mg/1時的高濃度機廢水;二代UASB反應器一般容積負荷為5-8kgCOD/m3;三代AIC厭氧反應器容積負荷率可達15-30kgCOD/m3。IC厭氧反應器適用于機高濃度廢水,如,玉米淀粉廢水、檸檬酸廢水、啤酒廢水、土豆加工廢水、酒精廢水。
發(fā)展歷程
在相當長的一段時間內,厭氧消化在理論、技術和上遠遠落后于好氧生物處理的發(fā)展。20世紀60年代以來,能源短缺問題日益突出,這促使人們對厭氧消化工藝進行重新認識,對處理工藝和反應器結構的設計以及甲烷回收進行了大量研究,使得厭氧消化技術的理論和實踐都了很大進步,并得到。厭氧消化具下列優(yōu)點:需攪拌和供氧,動力消耗少;能產生大量含甲烷的沼,是很好的能源物質,可用于發(fā)電和家庭燃;可高濃度進水,保持高污泥濃度,所以其溶劑機負荷達到規(guī)準仍需要進一步處理;初次啟動時間長;對溫度要求較高;對毒物影響較敏感;遭破壞后,恢復期較長。污水厭氧生物處理工藝按微生物的凝聚形態(tài)可分為厭氧活性污泥法和厭氧生物膜法。厭氧活性污泥法包括普通消化池、厭氧接觸消化池、升流式厭氧污泥床(upflow anaerobic sludge blanket,UASB)、厭氧顆粒污泥膨脹床(EGSB)等;厭氧生物膜法包括厭氧生物濾池、厭氧流化床和厭氧生物轉盤。
技術機理
厭氧生物處理技術在水處理行業(yè)中一直都受到工作者們的青睞,由于其具良好的去除效果,更高的反應速率和對毒性物質更好的適應,更重要的是由于其相對好氧生物處理廢水來說不需要為氧的傳遞提供大量的能耗,使得厭氧生物處理在水處理行業(yè)中十分。但由于總體反應式基于莫諾方程的厭氧處理受到低濃度廢水Ks的限制,所以厭氧在處理低濃度廢水方面沒太大的空間,可近的一些報道和試驗表明,厭氧如果提供合適的外部條件,在處理低濃度廢水方面仍然非常高的處理效果。
我們可以根據厭氧反應的原理加以動力學方程推導出厭氧生物處理低濃度廢水尤其在處理生活污水方面的合適條件。
厭氧反應四個階段
一般來說,廢水中復雜機物物料比較多,通過厭氧分解分四個階段加以降解:
(1)水解階段:高分子機物由于其大分子體積,不能直接通過厭氧菌的細胞壁,需要在微生物體外通過胞外酶加以分解成小分子。廢水中特例的機物質比如纖維素被纖維素酶分解成纖維二糖和葡萄糖,淀粉被分解成麥芽糖和葡萄糖,蛋白質被分解成短肽和氨基酸。分解后的這些小分子能夠通過細胞壁進入到細胞的體內進行下一步的分解。
(2)酸化階段:上述的小分子機物進入到細胞體內轉化成更為簡單的化合物并被分配到細胞外,這一階段的主要產物為揮發(fā)性脂肪酸(VFA),同時還部分的醇類、乳酸、二氧化碳、氫、氨、硫化氫等產物產生。
(3)產乙酸階段:在此階段,上一步的產物進一步被轉化成乙酸、碳酸、氫以及新的細胞物質。
(4)產甲烷階段:在這一階段,乙酸、氫、碳酸、甲酸和甲醇都被轉化成甲烷、二氧化碳和新的細胞物質。這一階段也是整個厭氧過程為重要的階段和整個厭氧反應過程的限速階段。
上述四個階段中,人認為二個階段和三個階段可以分為一個階段,在這兩個階段的反應是在同一類細菌體類完成的。前三個階段的反應速度很快,如果用莫諾方程來模擬前三個階段的反應速率的話,Ks(半速率常數)可以在50mg/l以下,μ可以達到5KgCOD/KgMLSS.d。而四個反應階段通常很慢,同時也是為重要的反應過程,在前面幾個階段中,廢水的中污染物質只是形態(tài)上發(fā)生變化,COD幾乎沒什么去除,只是在四個階段中污染物質變成甲烷等體,使廢水中COD大幅度下降。同時在四個階段產生大量的堿度這與前三個階段產生的機酸相平衡,維持廢水中的PH穩(wěn)定,反應的連續(xù)進行。
反應器采用玻璃鋼材質,一次整體纏繞工藝成型,制作方便、強、、處理、、、、。
反應器可配備在線分析儀、PH控制計、差壓變送器、壓力傳感器、流量傳感器、電導率儀、液位控制計、電磁閥、變頻器及控制柜等組成的控制,以上控制情況均以數字形式顯示在顯示器界面上,使管理人員一目了然,并故障報警,便于管理與維護。
天津市ic厭氧反應器
明基設備有限公司坐落于濰坊市。是設備的,本是一家從事設備的設計、開發(fā)、,、技術培訓、水處理藥劑研究與零配件為一體的創(chuàng)新技術企業(yè)。:玻璃鋼一體化污水處理設備、地埋式生活污水處理設備、工業(yè)廢水處理設備、加藥裝置、一體化自動加藥設備、刮吸泥機、二氧化氯發(fā)生器、UASB厭氧反應設備、IC反應器、供水設備、生物濾池、一體化污水處理設備、緩釋消毒器、氣浮機、實驗污水處理設備等。友好。