熒光產(chǎn)生機(jī)理
熒光是一種光致發(fā)光的冷發(fā)光現(xiàn)象。當(dāng)光照射到某些原子時,光的能量使原子核周圍的一些電子由原來的軌道躍遷到了能量更高的軌道,即從基態(tài)躍遷到*激發(fā)單線態(tài)或第二激發(fā)單線態(tài)等。*激發(fā)單線態(tài)或第二激發(fā)單線態(tài)等是不穩(wěn)定的,所以會恢復(fù)基態(tài),當(dāng)電子由*激發(fā)單線態(tài)恢復(fù)到基態(tài)時,能量會以光的形式釋放,所以產(chǎn)生熒光。另外,熒光是物質(zhì)吸收光照或者其他電磁輻射后發(fā)出的光。大多數(shù)情況下,發(fā)光波長比吸收波長較長,能量更低。但是,當(dāng)吸收強(qiáng)度較大時,可能發(fā)生雙光子吸收現(xiàn)象,導(dǎo)致輻射波長短于吸收波長的情況發(fā)生。當(dāng)輻射波長與吸收波長相等時,既是共振熒光。
熒光參數(shù)
在葉綠素?zé)晒夥治鲋谐S玫臒晒鈪?shù)是初始熒光Fo、暗適應(yīng)后zui大熒光產(chǎn)量Fm、可變熒光Fv、zui大光化學(xué)效率Fv/Fm、光照下zui大熒光產(chǎn)量Fm"、給定光強(qiáng)下穩(wěn)態(tài)熒光Fs、光照下光系統(tǒng)II的有效量子產(chǎn)量Yield、光化學(xué)猝滅系數(shù)qP、非光化學(xué)猝滅系數(shù)qP和NPQ。在這里Fo是已經(jīng)暗適應(yīng)的光和機(jī)構(gòu)光系統(tǒng)II反應(yīng)中心均處于開放時的熒光強(qiáng)度,它與所激發(fā)的強(qiáng)度和葉綠素濃度有關(guān),而與光合作用的光反應(yīng)無關(guān)。Fm為充分暗適應(yīng)后的zui大熒光,是已經(jīng)暗適應(yīng)的光合機(jī)構(gòu)光系統(tǒng)II反應(yīng)中心全部關(guān)閉時的熒光強(qiáng)度,F(xiàn)v是熒光的可變部分,受耗散能量的途徑因素的影響。Fv/Fm是表明光化學(xué)反應(yīng)狀況的一個重要參數(shù),反應(yīng)光系統(tǒng)II反應(yīng)中心的zui大光能轉(zhuǎn)換效應(yīng)。
葉綠素?zé)晒猬F(xiàn)象的發(fā)現(xiàn)
將暗適應(yīng)的綠色植物突然暴露在可見光下后,植物綠色組織發(fā)出一種暗紅色,強(qiáng)度不斷變化的熒光。熒光隨時間變化的曲線稱為葉綠素?zé)晒庹T導(dǎo)動力學(xué)曲線。zui直觀的表現(xiàn)是,葉綠素溶液在透射光下呈綠色,在反射光下呈紅色的現(xiàn)象。其本質(zhì)是,葉綠素吸收光后,激發(fā)了捕光色素蛋白復(fù)合體,LHC將其能量傳遞到光系統(tǒng)2或光系統(tǒng)1,期間所吸收的光能有所損失,大約3%-9%的所吸收的光能被重新發(fā)射出來,其波長較長,即葉綠素?zé)晒狻?br />葉綠素?zé)晒猱a(chǎn)生的原理
葉片是進(jìn)行光合作用的主要器官,葉綠體是進(jìn)行光合作用的主要細(xì)胞器。葉綠體是由葉綠體膜包裹起來的組織,膜內(nèi)主要含有基質(zhì)、基粒、類囊體。葉綠體的光合色素主要集中在基粒之中,光能轉(zhuǎn)換為化學(xué)能的主要過程是在基粒中進(jìn)行的。
在高等植物體內(nèi)含有光合色素包括葉綠素和類胡蘿卜素兩種,一般情況下以3:1的比例存在于類囊體的膜中。葉綠素分為葉綠素a和葉綠素b,類胡蘿卜素分為胡蘿卜素和葉黃素。
葉綠素不溶于水,而溶于有機(jī)溶劑。從化學(xué)性質(zhì)講,葉綠素是葉綠酸的產(chǎn)物,葉綠酸的兩個羥基分別被甲醇和葉綠醇酯化而得到的,對光、熱、酸敏感,能發(fā)生皂化反應(yīng),性質(zhì)不穩(wěn)定。
熒光產(chǎn)生的物理機(jī)制是斯托克斯位移,當(dāng)一定波長的光子碰撞到葉綠素分子時,光子可能被分子吸收,使分子的能量升高,處于較高能態(tài)的分子是不穩(wěn)定的,一般要通過釋放吸收的能量而回到穩(wěn)定的基態(tài)即zui低能級,其中一部分將以輻射的形式回到基態(tài)。分子必須在吸收一定頻率范圍的激發(fā)光后,通過振動馳豫回到*激發(fā)電子態(tài)的zui低能級,由此向下的輻射躍遷才可能產(chǎn)生熒光,因此熒光的波長一般要比激發(fā)光的波長要長。
光合作用
光合作用是指含葉綠素的植物細(xì)胞和細(xì)菌吸收光能,將無機(jī)物轉(zhuǎn)化為有機(jī)物并釋放氧氣的過程。他是高等植物從外界環(huán)境獲取能量的重要途徑,是高等植物進(jìn)行生命活動的基礎(chǔ)。由綠色植物發(fā)射的葉綠素?zé)晒庖砸环N復(fù)雜的方式表達(dá)光合作用活性和行為。當(dāng)光子照射綠色植物的葉片時,光能在葉片的分配有反射、透射和吸收等三種主要的去激途徑。葉綠素分子吸收的光能除了大部分進(jìn)行光化學(xué)反應(yīng)外,少部分會以熱耗散和熒光的方式釋放出來。
在植物光合作用過程中,葉綠素色素分子對光能的吸收及能量的轉(zhuǎn)變途徑中包括著極復(fù)雜的生物物理及生物化學(xué)過程。在葉綠體內(nèi)激發(fā)能從葉綠素b向葉綠素a的傳遞效率幾乎達(dá)到100%,所以檢測不到葉綠素b的熒光,因此,在對葉綠素?zé)晒膺M(jìn)行分析時,通常是指葉綠素a發(fā)出的熒光。
光合作用過程中有兩種不同的光化學(xué)反應(yīng),他們發(fā)生在相關(guān)聯(lián)的不同色素基團(tuán)中,這些基團(tuán)被稱為PSI和PSII。在常溫下,PSI色素系統(tǒng)基本不發(fā)熒光,接近95%的被檢測到的,葉綠素?zé)晒庑盘杹碓从赑SII相關(guān)的葉綠素分子,因此,我們研究的葉綠素?zé)晒夤庾V主要由PSII相關(guān)葉綠素分子產(chǎn)生的。
葉綠素?zé)晒獾臏y量
測量光閃,光源光源,能量極低,只能輕微的擾動光合結(jié)構(gòu)的氧化還原能量極低,只能輕微的擾動光合結(jié)構(gòu)的氧化還原狀態(tài),而剛好不產(chǎn)生電子的分離與傳遞。
典型光閃持續(xù)時間,典型光強(qiáng),波長,飽和光閃,光源,攜帶很高的能量,能夠一次翻轉(zhuǎn)所有活化攜帶很高的能量,能夠一次翻轉(zhuǎn)所有活化反應(yīng)中心的光化學(xué)狀態(tài)反應(yīng)中心的光化學(xué)狀態(tài)。
葉綠素?zé)晒夥治龇椒ǖ姆诸?/strong>
葉綠素?zé)晒夥治龇ㄖ饕譃閮深?,一類是研究熒光?qiáng)度隨時間變化,即葉綠素?zé)晒庹T導(dǎo)動力學(xué);一類是研究熒光強(qiáng)度在波長空間范圍內(nèi)的變化,即葉綠素?zé)晒夤庾V分析法。
葉綠素?zé)晒鈩恿W(xué)研究的特點
葉綠素?zé)晒鈩恿W(xué)特性包含著光合作用過程的豐富信息,光能的吸收和轉(zhuǎn)換,能量的傳遞與分配,反應(yīng)中心的狀態(tài),過剩光能及其耗散,光合作用光抑制與光破壞。
可以對光合器官進(jìn)行“無損傷探查”
操作步驟簡單快捷。
葉綠素?zé)晒鈨x的應(yīng)用
可以做野外葉片研究,溫室培養(yǎng),作物病害評估,環(huán)境評價,園藝學(xué),農(nóng)學(xué),林學(xué),水生物學(xué),毒理學(xué),突變株篩選,遺傳育種等。
(空格分隔,最多3個,單個標(biāo)簽最多10個字符)
立即詢價
您提交后,專屬客服將第一時間為您服務(wù)