黄色视频不卡_午夜福利免费观看在线_亚洲国产精品999在线_欧美绝顶高潮抽搐喷水_久久精品成人免费网站_晚上一个人看的免费电影_国产又色又爽无遮挡免费看_成人国产av品久久久

    1. <dd id="lgp98"></dd>
      • <dd id="lgp98"></dd>
        1. 靶點(diǎn)科技(北京)有限公司

          ClickChemistryTools基于點(diǎn)擊化學(xué)的糖譜學(xué)研究解決方案

          時(shí)間:2021-6-24閱讀:1835

          Click-&-Go IsoTAG Kit for Profiling Intact Glycopeptides

           

          While there has been much interest in profiling the intact glycoproteome, the complexity of glycoproteoforms (and more broadly, all proteoforms) remains challenging to completely define. Mass spectrometry (MS) is commonly employed for characterization of complex proteomic samples. A popular strategy for protein identification is the bottom-up shotgun proteomics approach. In this method, a mixture of proteins is subjected to proteolytic digestion, the resulting peptides are separated by LC and detected by MS, and their parent proteins are inferred from the assigned peptide sequences.

           

          To convert MS data acquired from proteolytic digests into protein identifications, tandem MS can be used to obtain sequence information for individual peptides, followed by comparing an in-silico proteolytic digest of an organism’s proteome. Typically, only the most abundant peptides are selected for fragmentation (Figure 2), whereas data for those peptides in relatively low quantities are not obtained. An inherent problem in shotgun proteomics is identifying proteins of low abundance, such as biomarkers for disease states, against a background of proteins whose concentrations can span up to 12 orders of magnitude.

          Figure 1. Metabolic labeling with a chemically functionalized glycan, chemical taggingand enrichment using an isotopic recoding affinity probe

           

           

          To address the unique challenges of the global characterization of the intact glycoproteome, a mass-independent chemical glycoproteomics platform, termed isotope targeted glycoproteomics (IsoTag) was developed by the Carolyn Bertozzi group. The platform is comprised of four central components: (i) metabolic labeling with a chemically functionalized glycan, (ii) chemical tagging and enrichment using an isotopic recoding affinity probe, (iii) directed tandem MS, and (iv) targeted glycopeptide assignment (Figure 2).

           

                                                                    

          Figure 2. Traditional proteomics and Iso-Tag-directed proteomics workflow

           

          IsoTaG is performed by isotopic recoding and enrichment of metabolically labeled glycoproteins followed by directed tandem MS (MS2 or MSn) analysis and intact glycopeptide assignment. Isotopic recoding is accomplished by metabolic labeling of cell or tissue samples with azide- or alkyne-functionalized sugars, followed by chemical conjugation with a biotin probe bearing a unique isotopic signature.

           

          Some examples of sugar labels are peracetylated N-azidoacetylmannosamine (Ac4ManNAz), which is converted to the corresponding azidosialic acid (SiaNAz), and peracetylated N-azidoacetylgalactosamine (Ac4GalNAz), which is metabolized to label glycans possessing N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine (GalNAc) (not provided with kit).

           

          In order to perform isotopic tagging, the kit provides two cleavable IsoTaG probes encoded by zero [M] and two [M + 2] deuterium atoms. Probes with different encoding can be provided by Click Chemistry Tools though custom synthesis. The IsoTaG probe with zero, and that with two deuterium atoms [M, M + 2] can be used in different proportions; 1:1, 1:2, 1:3 and 1:4. Pattern recognition with isotopic ratio of 1:3 showed the highest fidelity.

                             Figure 3. Cleavable IsoTaG probe encoded by zero deuterium atoms [M] (R = H) and two deuterium atoms [M+2] (R = D)

           

          Through these probes, a unique isotopic signature is embedded exclusively into the glycopeptides. The isotopic signature serves as a computationally recognizable full-scan MS reporter. A computational algorithm, termed isotopic signature transfer and mass pattern prediction (IsoStamp), for the detection of recorded species in full-scan mass spectra, was also developed by the Carolyn Bertozzi group. IsoStamp compares observed and predicted isotopic envelopes to identify chemically tagged species in full-scan mass spectra.

           

          IsoTag has the potential to enhance any proteomics platform that employs chemical labeling for targeted protein identification, including isotope-coded affinity tagging, isobaric tagging for relative and absolute quantitation, and chemical tagging strategies for post-translational modification.


          Description                                          Product #       Pkg. Size       Price(¥)


           

          Click-&-Go™ IsoTag Kit for Intact Glycopeptides Profiling *azide modified proteins*      1448       1 kit            8900.0   

          Click-&-Go™ IsoTag Kit for Intact Glycopeptides Profiling *alkyne modified proteins*     1449       1 kit            8900.0

          DADPS H2/D2 Biotin Azide, 2 mg each                                     1450          1 set           6580.0    

          DADPS H2/D2 Biotin Alkyne, 2 mg each                                     1451         1 set           6580.0



          Selected References:

          1. Woo, C. M., et al. (2017). Development of IsoTaG, a Chemical Glycoproteomics Technique for Profiling Intact N- and O?Glycopeptides from Whole Cell Proteomess. J. Proteome Res., 16: 1706−18.

          2. Woo, C.M.., et al. (2017). Mapping and Quantification of Over 2000 O-linked Glycopeptides in Activated Human T Cells with Isotope-Targeted Glycoproteomics (Isotag). Mol. Cell.Proteomics., 17: 764−75.

          3. Gao, G., et al. (2017). Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs. J. Am. Chem. Soc., 140: 4259−68.

          4. Woo, C.M., et al. (2015). Isotope-targeted glycoproteomics (IsoTaG): a mass-independent platform for intact N- and O-glycopeptide discovery and analysis. Nat Methods., 12: 561−7.

          5. Weerapana, E., et al. (2010). Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature, 648: 790−5.

          Iso-Tag products are covered by U.S. Patent No.: 10,114,026.


          This product may be used for research purposes only. It is not licensed for resale and may only be used by the buyer. This product may not be used and is not licensed for clinical assays, where the results of such assays are provided as a diagnostic service. If a diagnostic or therapeutic use is anticipated, then a license must be requested from the University of California. The availability of such diagnostic and therapeutic use license(s) cannot be guaranteed from the University of California.

          會(huì)員登錄

          X

          請(qǐng)輸入賬號(hào)

          請(qǐng)輸入密碼

          =

          請(qǐng)輸驗(yàn)證碼

          收藏該商鋪

          X
          該信息已收藏!
          標(biāo)簽:
          保存成功

          (空格分隔,最多3個(gè),單個(gè)標(biāo)簽最多10個(gè)字符)

          常用:

          提示

          X
          您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~

          以上信息由企業(yè)自行提供,信息內(nèi)容的真實(shí)性、準(zhǔn)確性和合法性由相關(guān)企業(yè)負(fù)責(zé),化工儀器網(wǎng)對(duì)此不承擔(dān)任何保證責(zé)任。

          溫馨提示:為規(guī)避購(gòu)買(mǎi)風(fēng)險(xiǎn),建議您在購(gòu)買(mǎi)產(chǎn)品前務(wù)必確認(rèn)供應(yīng)商資質(zhì)及產(chǎn)品質(zhì)量。

          撥打電話
          在線留言
          汉源县| 余姚市| 华阴市| 嵊泗县| 湄潭县| 盐山县| 玉门市| 哈密市| 瑞金市| 蓬溪县| 海盐县| 江安县| 仙桃市| 额尔古纳市| 井陉县| 合阳县| 遂昌县| 务川| 博湖县| 安义县| 崇礼县| 将乐县| 马公市| 栾城县| 武安市| 哈尔滨市| 滁州市| 台南市| 墨玉县| 女性| 昌宁县| 浏阳市| 安吉县| 玛沁县| 邮箱| 明水县| 开平市| 周宁县| 济宁市| 格尔木市| 中阳县|