經(jīng)典型TX500C 旋轉(zhuǎn)滴法振蕩滴,升級(jí)
新聞排行榜
更多產(chǎn)品展示
更多涂料附著力的基本原理分析
-
提供商
美國(guó)科諾工業(yè)有限公司 (戰(zhàn)略投資公司:上海梭倫信息科技有限公司)
-
資料大小
0K
- 資料圖片
-
下載次數(shù)
2次
-
資料類(lèi)型
未傳
-
瀏覽次數(shù)
2200次
一、附著力理論和機(jī)理
當(dāng)兩物體被放在一起達(dá)到緊密的界面分子接觸,以至生成新的界面層,就生成了附著力。附著力是一種復(fù)雜的現(xiàn)象,涉及到“界面”的物理效應(yīng)和化學(xué)反應(yīng)。因?yàn)橥ǔC恳豢捎^察到的表面都與好幾層物理或化學(xué)吸附的分子有關(guān),真實(shí)的界面數(shù)目并不確切知道,問(wèn)題是在兩表面的何處劃界及附著真正發(fā)生在哪里。
當(dāng)涂料施工于底材上,并在干燥和固化的過(guò)程中附著力就生成了。這些力的大小取決于表面和粘結(jié)料(樹(shù)脂、聚合物、基料)的性質(zhì)。廣義上這些力可分為二類(lèi):主價(jià)力和次價(jià)力(表1)?;瘜W(xué)鍵即為主價(jià)力,具有比次價(jià)力高得多的附著力,次價(jià)力基于以氫鍵為代表的弱得多的物理作用力。這些作用力在具有極性基團(tuán)(如羧基)的底材上更常見(jiàn),而在非極性表面如聚乙烯上則較少。
涂料附著的確切機(jī)理人們尚未了解。不過(guò),使兩個(gè)物體連接到一起的力可能由于底材和涂料通過(guò)涂料擴(kuò)散生成機(jī)械連接、靜電吸引或化學(xué)鍵合。根據(jù)底材表面和所用涂料的物理化學(xué)性質(zhì)的不同,附著可采取上述機(jī)理的一種或幾種。一些提出的理論討論如下。
1.機(jī)械連接理論
這種涂層作用機(jī)制適用于當(dāng)涂料施工于含有孔、洞、裂隙或空穴的底材上時(shí),涂料能夠滲透進(jìn)去。在這種情況下,涂料的作用很象木材拼合時(shí)的釘子,起機(jī)械鉚定作用。當(dāng)?shù)撞挠邪疾鄄⑻顫M固化的涂料時(shí),由于機(jī)械作用,去掉涂層更加困難,這與把兩塊榫結(jié)的木塊拼在一起類(lèi)似。對(duì)各種表面的儀器分析和繪圖(外形圖)表明,涂料確實(shí)可滲透到復(fù)雜“隧道”形狀的凹槽或裂紋中,在固化硬化時(shí),可提供機(jī)械附著。各種涂料對(duì)老的或已風(fēng)化的涂層的附著,以及對(duì)噴砂底材的附著就屬于這種機(jī)理。磷酸鋅或鐵與涂料具有較大的接觸面積,因而能提高附著和耐蝕性。圖2展示了假定的底材表面 形狀和涂料的滲透。
表面的粗糙程度影響涂料和底材的界面面積。因?yàn)槿コ繉铀璧牧εc幾何面積有關(guān),而使涂層附著于底材上的力與實(shí)際的界面接觸面積有關(guān)。隨著表面積增大,去除涂層的困難增加,這通??赏ㄟ^(guò)機(jī)械打磨方法提供粗糙表面來(lái)實(shí)現(xiàn)。截面的幾何面積和實(shí)際的界面面積的比較見(jiàn)圖3。實(shí)際的界面接觸面積一般比幾何面積大好幾倍。通過(guò)噴砂使表面積增加,結(jié)果附著力增加,見(jiàn)圖4。顯然由于其他許多因素的影響,附著并不按相同比例增加,不過(guò)通??梢?jiàn)到顯著的增加。
只有當(dāng)涂料滲透到不規(guī)則表面處,提高表面粗糙度才有利,若不能滲入,則涂料與表面的接觸會(huì)比相應(yīng)的幾何面積還小,并且在涂料和底材間留有空隙,空隙中駐留的氣泡會(huì)導(dǎo)致水汽的聚積,終導(dǎo)致附著力的損失。 經(jīng)常通過(guò)對(duì)已固化的涂層進(jìn)行磨砂處理,可改進(jìn)層間附著力(特別是在汽車(chē)涂料中), 特別是在底色漆/清漆體系中,要求清漆平滑、光亮且表面能低,因此第二層清漆的附著有一定的困難。這一問(wèn)題當(dāng)涂料在比原定溫度高得多的溫度下固化或烘烤時(shí)間延長(zhǎng)時(shí)變得更為嚴(yán)重,這兩種情況下,對(duì)該表面進(jìn)行輕度打磨表明,附著力可顯著提高。雖然表面粗糙化能提高附著力,但必須注意避免深而尖的形狀,由于粗糙化生成的尖※※導(dǎo)致透影(看到底材),在某些情況下并不希望這樣;而且,深而尖的隆起會(huì)形成不均一的涂層,從而生成應(yīng)力集中點(diǎn),附著力降低,從而耐久性下降。
只要涂膜稍具流動(dòng)性,涂膜收縮,厚度不均勻以及三維尺寸的變化就很少會(huì)生成不可釋放應(yīng)力,但隨著粘度和涂層剛性的增加以及對(duì)底材的附著力逐漸形成會(huì)生成的應(yīng)力,并殘留于干漆膜中。顯然在固定施工參數(shù)(濕膜和干膜厚度)時(shí),凸起部分的涂層厚度比凹陷處小,導(dǎo)致物理性質(zhì)不同。這種不均一涂層具有很高的內(nèi)部應(yīng)力,在投入應(yīng)用時(shí),會(huì)進(jìn)一步受到修補(bǔ)漆溶劑的侵蝕或老化的影響,偶而會(huì)超過(guò)涂膜的應(yīng)力承受能力,導(dǎo)致裂紋、剝落或其他涂膜完整性的降低。
電鍍金屬對(duì)聚乙烯和ABS塑料的附著力證明是來(lái)源于機(jī)械連接。金屬電鍍工藝包括首先對(duì)塑料表面處理,生成的機(jī)械凹陷,有利于機(jī)械連結(jié),然后用氯化亞錫溶液活化,并在Pd2+溶液中使Pd沉積,不通電沉積鎳,然后電鍍所需金屬,如鉻。只有當(dāng)塑料處理后生成連接凹陷時(shí),電鍍金屬對(duì)塑料的附著力才強(qiáng)。不同預(yù)處理金屬不僅改變表面的化學(xué)組成,而且會(huì)生成表面連接點(diǎn),機(jī)械連結(jié)對(duì)這類(lèi)表面起著即使不是關(guān)鍵,也是相當(dāng)大的作用。未處理和磷化處理的冷軋鋼板的表面形態(tài),磷化后表面上可發(fā)現(xiàn)的交錯(cuò)的磷酸鐵微芯片,芯片間的空間提供了的物理連接點(diǎn)。
2.化學(xué)鍵理論
在界面間可能形成共價(jià)鍵,且在熱固性涂料中更有可能發(fā)生,這一類(lèi)連結(jié)強(qiáng)且耐久性*,但這要求相互反應(yīng)的化學(xué)基團(tuán)牢牢結(jié)合在底材和涂料上。因?yàn)榻缑鎸雍鼙? 界面上的化學(xué)鍵很難檢測(cè)到。然而,如下面所討論的,確實(shí)發(fā)生了界面鍵合,從而大大提高了粘結(jié)強(qiáng)度。有些表面,如已涂過(guò)的表面、木材、復(fù)合物和有些塑料,會(huì)有各種各樣的化學(xué)官能團(tuán),在合適的條件下,可和涂層材料形成化學(xué)鍵。
有機(jī)矽烷廣泛用于玻璃纖維的底漆以提高樹(shù)脂和纖維增強(qiáng)塑料中玻璃的附著力,也可用作底漆或一體化混合物以促進(jìn)樹(shù)脂對(duì)礦石、金屬和塑料的附著力。實(shí)質(zhì)上,應(yīng)用時(shí)生成了矽醇基,可與玻璃表面的矽醇基,或者也可能與其他金屬氧化物形成強(qiáng)的醚鍵 。這類(lèi)化學(xué)鍵合可發(fā)生在玻璃、陶瓷及一些金屬底材表面的金屬氫氧化物和含矽烷涂料間。
含反應(yīng)性基團(tuán)如羥基和羧基的涂料傾向于和含有類(lèi)似基團(tuán)的底材更牢固地附著、這種機(jī)理的一個(gè)例子是三聚氰胺固化丙烯酸面漆對(duì)三聚氰胺固化聚酯底漆的附著力,一種可能的解釋是已固化底漆的剩余羥基會(huì)與面漆的三聚氰胺固化劑反應(yīng),實(shí)際上把底漆和面漆拉在了一起。當(dāng)該涂料過(guò)烘烤(烘烤時(shí)間過(guò)長(zhǎng)和/或固化溫度過(guò)高)時(shí), 面漆的附著力顯著減弱,有時(shí)甚至無(wú)附著力。剩余羥基會(huì)對(duì)附著力有貢獻(xiàn)可從IR譜圖得到證實(shí):標(biāo)準(zhǔn)烘烤的底漆富含羥基,而過(guò)烘烤底漆即使有也只有很少的羥基。
當(dāng)?shù)撞暮蟹磻?yīng)性羥基時(shí),在適當(dāng)?shù)臈l件下也會(huì)和熱固性聚氨酯涂料發(fā)生化學(xué)反應(yīng)?;瘜W(xué)鍵合也可適用于解釋環(huán)氧樹(shù)脂涂料對(duì)纖維素底材的附著力。顯然,正如紅外光譜所證實(shí)的,界面上環(huán)氧樹(shù)脂的環(huán)氧基和纖維素的羥基發(fā)生反應(yīng),導(dǎo)致纖維素上羥基伸縮振動(dòng)峰3350cm-1和C-O的伸縮振動(dòng)峰1100~1500cm-1的消失,同時(shí)環(huán)氧樹(shù)脂的環(huán)氧基915cm-1峰和氧橋?qū)ΨQ伸縮振動(dòng)峰1160cm-1消失。
有些聚合物對(duì)已交聯(lián)的聚合物表面附著較弱,出現(xiàn)界面性的缺損。有報(bào)導(dǎo)稱加入少量的某些含氮基團(tuán)能大大提高附著力。例如氨基聚合物對(duì)交聯(lián)醇酸樹(shù)脂具有很強(qiáng)的附著力, 因?yàn)榻缑嫔蟽上嚅g發(fā)生氨-酯交換反應(yīng),形成酰胺鍵。
R1NH2+RCOOR2→RCONH-R1
以丁胺作氨基聚合物的模型化合物可以很容易發(fā)現(xiàn)氨-酯交換反應(yīng)。當(dāng)胺加入未固化醇酸樹(shù)脂的甲苯溶液中,兩者在室溫下很易反應(yīng)形成二丁基苯二酰胺,并會(huì)結(jié)晶而析出。 FTIR光譜法檢測(cè)氨基樹(shù)脂和未固化醇酸樹(shù)脂的混合物發(fā)現(xiàn),混合物烘烤后胺基吸收峰下 降,同時(shí)出現(xiàn)酰胺吸收峰,表明在界面上確實(shí)發(fā)生了氨-酯交換反應(yīng)。
3.靜電理論 可以想像以帶電雙電層形式存在的靜電作用力形成于涂層-表面的界面上,涂層和表面均帶有殘余電荷,散布于體系中,這些電荷的相互作用能提高一些附著力。靜電力主要是色散力和來(lái)源于*偶極子的相互作用力。含有*偶極子物質(zhì)的分子間的吸引力由一個(gè)分子的正電區(qū)和另一分子的負(fù)電區(qū)的相互作用引起。 考查附著力時(shí)潤(rùn)濕性是必須的標(biāo)準(zhǔn)。前所討論的附著機(jī)理只有當(dāng)?shù)撞暮屯苛线_(dá)到有效潤(rùn)濕時(shí)才起作用。表面的潤(rùn)濕可從熱力學(xué)角度描述,涂料在液態(tài)時(shí)的表面張力以及底材和固態(tài)涂膜的表面能是影響界面連接強(qiáng)度和附著力形成的重要參數(shù)。 均相的固體或液體表面的分子或原子的周?chē)h(huán)境與內(nèi)部不同。 在內(nèi)部分子被相同的分子所包圍,分子間的距離由把分子拉到一起的吸引力和阻止分子占據(jù)同一位置的排斥力的平衡決定;而界面上的分子各個(gè)方向受力不均勻,它們和表面以上的空氣相互作用,同時(shí)受表面以下分子的吸引。表面下的分子傾向于將表面分子向內(nèi)拉,使表面分子數(shù)小,因而表面積也小,這種吸引提高了液體的表面張力,并可解釋液體以液滴形式存在,好象被一層彈性表皮覆蓋。而且表面分子間的距離比體相大,因而能量更高。把分子從內(nèi)部移到表面需要做功,液體增加單位表面積導(dǎo)致的Helmholtz自由 能的增加值定義為表面張力 2.界面熱力學(xué) 液體涂料對(duì)固態(tài)表面的潤(rùn)濕程度通過(guò)接觸角(θ)來(lái)測(cè)定,如圖13。當(dāng)θ=0,液體在表面自由鋪展,稱為潤(rùn)濕。當(dāng)液相和固相分子的分子吸引大于類(lèi)似的液體分子時(shí), 發(fā)生潤(rùn)濕。 3.接觸角和臨界表面張力 測(cè)定固體表面張力廣泛采用的辦法是測(cè)量接觸角。通過(guò)測(cè)定接觸角來(lái)計(jì)算表面自由能的辦法多有爭(zhēng)議,該問(wèn)題至今仍未解決,因?yàn)楣腆w的表面自由能不能直接測(cè)定。然 而本專題的用意并非討論這些觀點(diǎn),作者旨在通過(guò)列舉有爭(zhēng)議的觀點(diǎn),為操作者提供可靠的指導(dǎo),使讀者在估計(jì)表面熱力學(xué)參數(shù)時(shí)前進(jìn)一步。 近似的表觀接觸角可通過(guò)檢測(cè)設(shè)備供應(yīng)商提供的各種接觸角儀測(cè)定。該法中滴一滴各種不同的液體在待測(cè)的表面上,并測(cè)定接觸角。表面性質(zhì)測(cè)定的一種方法是臨界表 面張力γc,該法系通過(guò)測(cè)定一系列液體在表面上的接觸角,以接觸角的余弦對(duì)各種液體的表面張力作圖,并外推至Cosθ=1(θ=0)。外推表面張力稱為表面的臨界表面張力。例如根據(jù)上述程序,聚乙烯的臨界表面張力為31達(dá)因/厘米。當(dāng)一液滴滴于該表 面上時(shí),所有表面張力小于或等于該臨界表面張力的液體會(huì)自發(fā)鋪展。因此,環(huán)氧樹(shù)脂的表面張力為47達(dá)因/厘米,不會(huì)潤(rùn)濕聚乙烯表面,而另一方面矽油脫膜劑可在表面 上鋪展,其表面張力為24達(dá)因/厘米。 溶劑 表面張力(達(dá)厘/厘米) 水 72.7 乙二醇 48.4 丙二醇 36.0 鄰二甲苯30.0 甲苯 28.4 醋酸丁酯 25.2 正丁醇 24.6 石油溶劑油24.0 甲基異丁酮 23.6 甲醇 23.6 腦石油 22.0 正辛烷 21.8 脂肪烴石腦油 19.9 正己烷 18.4 涂料中典型聚合物和助劑的表面張力: 聚合物/表面張力(達(dá)因/厘米) 三聚氰胺樹(shù)脂 57.6 聚乙烯醇縮丁醛 53.6 苯代三聚氰胺樹(shù)脂 52 聚乙二酸己二酰胺 46.5 Epon 828 46 脲醛樹(shù)脂 45 聚酯三聚氰胺涂膜 44.9 聚環(huán)氧乙烷二醇,Mw6000 42.9 聚苯乙烯 42.6 聚氯乙烯 41.9 聚甲基丙烯酸甲酯 41 65%豆油醇酸 38 聚醋酸乙烯酯 36.5 聚甲基丙烯酸丁酯 34.6 聚丙烯酸正丁酯 33.7 Modaflow 32 聚四氟乙烯 Mw 1,088 21.5 聚二甲基矽氧烷 Mw 1,200 19.8 聚二甲基矽氧烷 Mw162 15.7 一個(gè)頗具戲劇性的例子是環(huán)氧樹(shù)脂和聚乙烯的試驗(yàn),當(dāng)未固化環(huán)氧傾倒于聚乙烯上并固化時(shí),附著力即使有也很低,而將聚乙烯熔融并涂于已固化環(huán)氧樹(shù)脂上,附著力相當(dāng) 強(qiáng)。在*種情況下,高表面能液體,如環(huán)氧樹(shù)脂不會(huì)潤(rùn)濕低表面能固體,如γc較低的聚乙烯;在第二種情況下,液體聚乙烯的表面能比固化的環(huán)氧低,有利于潤(rùn)濕 這一 點(diǎn)顯得特別重要,因?yàn)槿廴?a style="border-bottom: #0000ff 1px dotted; color: #0000ff" onmouseover="_JW_DS(this.innerText);_JW_show(0,this);" onmousemove="_JW_DS(this.innerText);" onmouseout="_JW_hide();" target="_blank">聚乙烯粘度較高,通常的為103帕?秒,而液體環(huán)氧粘度只有約1帕?秒。顯然當(dāng)有足夠的時(shí)間允許潤(rùn)濕時(shí),粘度并不重要。 Zisman圖并非沒(méi)有缺陷,Wu和其他人指出,與熔融或溶液聚合物外推資料相比,Zisman 臨界表面張力較低。業(yè)已提出許多專門(mén)適用于涂料和粘結(jié)劑的接觸角資料的處理方法。在Owns方法中,對(duì)至少兩種純液體(水和甲基碘)在相關(guān)表面上的接觸角進(jìn)行了測(cè)定。
涂料潤(rùn)濕固體表面的程度通過(guò)接觸角θ測(cè)定誘導(dǎo)偶極子間的吸引力,稱為倫敦力或色散力是范德華力的一種,也對(duì)附著力有所貢獻(xiàn),對(duì)某些底材/涂料體系,這些力提供了涂料和底材間的大部分吸引力。應(yīng)該注意到這些相互作用只是短程相互作用,與涂料/底材間距離的六次方或七次方成反比。因?yàn)楫?dāng)距離超過(guò)0.5納米(5埃)時(shí),這些力的作用明顯下降,所以涂層和底材的密切接觸是必要的。
4.擴(kuò)散理論
當(dāng)涂料和底材(聚合物)這兩相通過(guò)潤(rùn)濕達(dá)到分子接觸時(shí),根據(jù)材料的性質(zhì)和固化條件的不同,大分子上的某些片段會(huì)向界面另一邊進(jìn)行不同程度的擴(kuò)散。這種現(xiàn)象需經(jīng)兩步完成,即潤(rùn)濕之后鏈段穿過(guò)界面相互擴(kuò)散形成交錯(cuò)網(wǎng)狀結(jié)構(gòu)。因?yàn)殚L(zhǎng)鏈性質(zhì)不同和擴(kuò)散系數(shù)較低,非相似聚合物通常不兼容,因此,完整的大分子穿 過(guò)界面擴(kuò)散是不可能的。然而,理論和實(shí)驗(yàn)資料表明,局部鏈段擴(kuò)散很容易發(fā)生,并在聚合物間形成10~1000埃的擴(kuò)散界面層。涂料的擴(kuò)散也從接觸時(shí)間、固化溫度和分子結(jié)構(gòu)(分子量、分子鏈柔性、側(cè)鏈基團(tuán)、極性、雙鍵和物理兼容性)的影響間接得到證實(shí)。直接的證據(jù)則包括擴(kuò)散系數(shù)的測(cè)定、電鏡對(duì)界面結(jié)構(gòu)的觀察、輻射熱致發(fā)光技術(shù)和光學(xué)顯微鏡。顯然,這種擴(kuò)散易發(fā)生在諸如工程塑料的聚合物底材上,因?yàn)榉肿娱g自由體積較大,且與金屬相比分子間距離大得多。
二、附著形成機(jī)理
當(dāng)不相似的兩種材料達(dá)到“緊密”接觸時(shí),在空氣中的兩個(gè)自由表面消失,形成新的界面。界面相互作用的性質(zhì)決定了涂料和底材之間成鍵的強(qiáng)度,這種相互作用的程度基本由一相被另一相的潤(rùn)濕性決定,使用液體涂料時(shí),液相的流動(dòng)性也有很大幫助,因此潤(rùn)濕可被看作涂料和底材的密切接觸。為了保持涂層與底材的附著力,除了初步的潤(rùn)濕外,在涂膜形成后的潤(rùn)濕和固化后仍保持鍵合情況不變是很重要的。
涂料以下面的方式固化成膜:
(a)冷卻到熔融溫度(玻璃化溫度,Tg)以下,或
(b)化學(xué)交聯(lián)反應(yīng),或
(c)溶劑和稀釋劑的揮發(fā)
(a)類(lèi)涂料的例子如熱塑性粉末涂料或用于金屬或聚合物上的熱熔擠壓聚合物膜。
(b) 類(lèi)涂料包括單或雙組份可交聯(lián)環(huán)氧、聚氨酯或三聚氰胺固化丙烯酸體系。
(c)類(lèi)涂料 如印刷油墨和清漆,該類(lèi)型涂料中顏料的粘結(jié)料在干燥時(shí)也有交聯(lián)能力。因此涂料對(duì)底材的潤(rùn)濕是形成附著鍵的關(guān)鍵。
1.潤(rùn)濕性和表面能