黄色视频不卡_午夜福利免费观看在线_亚洲国产精品999在线_欧美绝顶高潮抽搐喷水_久久精品成人免费网站_晚上一个人看的免费电影_国产又色又爽无遮挡免费看_成人国产av品久久久

    1. <dd id="lgp98"></dd>
      • <dd id="lgp98"></dd>
        1. 官方微信|手機(jī)版

          產(chǎn)品展廳

          產(chǎn)品求購(gòu)企業(yè)資訊會(huì)展

          發(fā)布詢價(jià)單

          化工儀器網(wǎng)>產(chǎn)品展廳>生命科學(xué)儀器>細(xì)胞培養(yǎng)儀器>細(xì)胞培養(yǎng)系統(tǒng)>flexcell str-4000 flexcell細(xì)胞剪切力學(xué)實(shí)驗(yàn)裝置系統(tǒng)

          分享
          舉報(bào) 評(píng)價(jià)

          flexcell str-4000 flexcell細(xì)胞剪切力學(xué)實(shí)驗(yàn)裝置系統(tǒng)

          參考價(jià) 211
          訂貨量 ≥1
          具體成交價(jià)以合同協(xié)議為準(zhǔn)
          • 公司名稱 世聯(lián)博研(北京)科技有限公司
          • 品牌 其他品牌
          • 型號(hào) flexcell str-4000
          • 產(chǎn)地 美國(guó)flexcell
          • 廠商性質(zhì) 代理商
          • 更新時(shí)間 2020/2/19 13:07:01
          • 訪問(wèn)次數(shù) 1119

          聯(lián)系方式:李勝亮查看聯(lián)系方式

          聯(lián)系我們時(shí)請(qǐng)說(shuō)明是化工儀器網(wǎng)上看到的信息,謝謝!


          世聯(lián)博研(北京)科技有限公司(Bio Excellence International Tech Co.,Ltd)簡(jiǎn)稱為世聯(lián)博研。世聯(lián)博研是一家集進(jìn)口科研儀器代理銷售以及實(shí)驗(yàn)技術(shù)服務(wù)于一體的技術(shù)公司。世聯(lián)博研專注生物力學(xué)和3D生物打印前沿科研設(shè)備代理銷售及科研實(shí)驗(yàn)項(xiàng)目合作服務(wù),內(nèi)容涵蓋了血管力學(xué)生物學(xué)、生物力學(xué)建模仿真與應(yīng)用、細(xì)胞分子生物力學(xué)、組織修復(fù)生物力學(xué)、骨與關(guān)節(jié)生物力學(xué)、口腔力學(xué)生物學(xué)、眼耳鼻咽喉生物力學(xué)、康復(fù)工程生物力學(xué)、生物材料力學(xué)與仿生學(xué)、人體運(yùn)動(dòng)生物力學(xué)等生物力學(xué)研究以及生物材料打印、打印樣品生物力學(xué)性能測(cè)試分析的前沿領(lǐng)域科研利器和科研服務(wù)。

          世聯(lián)博研的客戶范圍:
          科研院所單位、生物醫(yī)學(xué)科研高校、醫(yī)院基礎(chǔ)科研單位等。

          世聯(lián)博研公司代理的品牌具有:
          1)近10年長(zhǎng)期穩(wěn)定的貨源
          2)以生物力學(xué)、細(xì)胞力學(xué)、細(xì)胞生物分子學(xué)、生物醫(yī)學(xué)組織工程、生物材料學(xué)為主,兼顧其他相關(guān)產(chǎn)品線
          3)提供專業(yè)產(chǎn)品培訓(xùn)和銷售培訓(xùn)
          4)良好的技術(shù)支持
          5)已成交老客戶考證
          6)每年新增的貨源。

          細(xì)胞應(yīng)力加載儀,3細(xì)胞打印機(jī),NanoTweezer新型激光光鑷系統(tǒng),PicoTwist磁鑷,美國(guó)NeuroIndx品牌Kuiqpick單細(xì)胞捕獲切割系統(tǒng)

          應(yīng)用領(lǐng)域 醫(yī)療衛(wèi)生,生物產(chǎn)業(yè)

          細(xì)胞剪切力學(xué)實(shí)驗(yàn)系統(tǒng),flexcell str-4000

          美國(guó)flexcell品牌,型號(hào):str-4000

          細(xì)胞剪切力學(xué)實(shí)驗(yàn)系統(tǒng),可提供穩(wěn)流式切應(yīng)力、脈沖式切應(yīng)力或者往返式切應(yīng)力多種流場(chǎng)刺激

          細(xì)胞剪切力學(xué)實(shí)驗(yàn)系,flexcell str-4000,細(xì)胞切應(yīng)力實(shí)驗(yàn)系統(tǒng),藥代動(dòng)力學(xué)實(shí)驗(yàn)裝置,可提供穩(wěn)流式切應(yīng)力、脈沖式切應(yīng)力或者往返式切應(yīng)力多種流場(chǎng)刺激,在實(shí)現(xiàn)細(xì)胞在流體切應(yīng)力的同時(shí)抻拉,實(shí)時(shí)觀察細(xì)胞在多力混合加載刺激下的變化反應(yīng),細(xì)胞量大,便于后期分析,便于后期分析細(xì)胞中基因的表達(dá)(mRNA檢測(cè)),以及使用流式細(xì)胞儀、基因芯片等進(jìn)行分析,產(chǎn)品成熟度與使用案例:國(guó)外內(nèi)有數(shù)千篇文獻(xiàn)

          Flexflow單通道平行板流室系統(tǒng)提供流體切應(yīng)力同時(shí)抻拉細(xì)胞


          FlexcellFlexFlow顯微切應(yīng)力加載設(shè)備(SHEAR Stress device)

          • 可以在提供流體切應(yīng)力的同時(shí)抻拉細(xì)胞,測(cè)試血管和結(jié)綈組織細(xì)胞對(duì)液體流動(dòng)的實(shí)時(shí)反應(yīng)。
          • 為培育在StageFlexer硅膠模表面或者基質(zhì)蛋白包被的細(xì)胞培養(yǎng)片上的細(xì)胞提供切應(yīng)力。
          • 使用FX-5000T應(yīng)力加載系統(tǒng)抻拉細(xì)胞,并且可以在實(shí)驗(yàn)前,實(shí)驗(yàn)中或者實(shí)驗(yàn)后提供切應(yīng)力。
          • 計(jì)算機(jī)控制蠕動(dòng)泵,調(diào)節(jié)切應(yīng)力大小,從0-35 dynes/cm2
          • 使用標(biāo)準(zhǔn)正立式顯微鏡實(shí)時(shí)觀察細(xì)胞在切應(yīng)力下的反應(yīng)。
          • 檢測(cè)細(xì)胞在流體作用下的排列反應(yīng)。
          • 加力同時(shí)實(shí)時(shí)檢測(cè)在液體切應(yīng)力下各種激活劑/抑制劑對(duì)細(xì)胞反應(yīng)的影響。使用熒光團(tuán)例如FURA-2檢測(cè)細(xì)胞內(nèi)[Ca2+]ic或者其它離子對(duì)切應(yīng)力反應(yīng)

          典型應(yīng)用文獻(xiàn):

          1. Archambault JM, Elfervig MK, Tsuzaki M, Herzog W, Banes AJ. Shear stress response of rabbit tendon cells is serum dependent. Proceedings of the Eleventh Canadian Society for Biomechanics Conference, 181, 2000.
          2. Archambault JM, Elfervig-Wall MK, Tsuzaki M, Herzog W, Banes AJ. Rabbit tendon cells produce MMP-3 in response to fluid flow without significant calcium transients. J Biomech 35(3):303-309, 2002.

          3. Clark PR, Jensen TJ, Kluger MS, Morelock M, Hanidu A, Qi Z, Tatake RJ, Pober JS. MEK5 is activated by shear stress, activates ERK5 and induces KLF4 to modulate TNF responses in human dermal microvascular endothelial cells. Microcirculation 18(2):102-117, 2011.
          4. de Castro LF, Maycas M, Bravo B, Esbrit P, Gortazar A. VEGF receptor 2 (VEGFR2) activation is essential for osteocyte survival induced by mechanotransduction. J Cell Physiol 230(2):278-85, 2015.
          5. Eifler RL, Blough ER, Dehlin JM, Haut Donahue TL. Oscillatory fluid flow regulates glycosaminoglycan production via an intracellular calcium pathway in meniscal cells. J Orthop Res 24(3):375-384, 2006.
          6. Elfervig M, Francke E, Archambault J, Herzog W, Tsuzaki M, Bynum D, Brown TD, Banes AJ. Fluid-induced shear stress activates human tendon cells to signal through multiple Ca2+ dependent pathways [abstract]. Transactions of the 46th Annual Meeting of the Orthopaedic Research Society 25:179, 2000.
          7. Elfervig M, Lotano M, Tsuzaki M, Faber J, Banes A J. Fluid-induced shear stress modulates Cx-43 expression in avian tendon cells but does not induce a Ca2+ signal [abstract]. Transactions of the 47th Annual Meeting of the Orthopaedic Research Society 26:570, 2001.
          8. Elfervig MK, Minchew JT, Francke E, Tsuzaki M, Banes AJ. IL-1? sensitizes intervertebral disc annulus cells to fluid-induced shear stress. J Cell Biochem 82(2):290-298, 2001.
          9. Finley MJ, Rauova L, Alferiev IS, Weisel JW, Levy RJ, Stachelek SJ. Diminished adhesion and activation of platelets and neutrophils with CD47 functionalized blood contacting surfaces. Biomaterials 33(24):5803-5811, 2012.
          10. Francke E, Banes A, Elfervig M, Brown T, Bynum D. Fluid-induced shear stress increases [Ca2+]ic in cultured human tendon epitenon cells [abstract]. Transactions of the 46th Annual Meeting of the Orthopaedic Research Society 25:638, 2000.
          11. Francke E, Elfervig MK, Sood A, Brown TD, Bynum DK, Banes AJ. Fluid-induced shear stress stimulates Ca2+ signaling in human epitenon cells [abstract]. 1999 Advances in Bioengineering, J.S. Wayne, ed. American Society of Mechanical Engineers: New York, 1999.
          12. Gao X, Wu L, O'Neil RG. Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 278(29):27129-27137, 2003.
          13. Ge C, Song J, Chen L, Wang L, Chen Y, Liu X, Zhang Y, Zhang L, Zhang M. Atheroprotective pulsatile flow induces ubiquitin-proteasome-mediated degradation of programmed cell death 4 in endothelial cells. PLoS One 9(3):e91564, 2014.
          14. Glossop JR, Hidalgo-Bastida LA, Cartmell SH. Fluid shear stress induces differential gene expression of leukemia inhibitory factor in human mesenchymal stem cells. J Biomat Tiss Eng 1:166-176, 2011.
          15. Gortazar AR, Martin-Millan M, Bravo B, Plotkin LI, Bellido T. Crosstalk between caveolin-1/extracellular signal-regulated kinase (ERK) and β-catenin survival pathways in osteocyte mechanotransduction. J Biol Chem 288(12):8168-8175, 2013.
          16. Grabias BM, Konstantopoulos K. Epithelial-mesenchymal transition and fibrosis are mutually exclusive reponses in shear-activated proximal tubular epithelial cells. FASEB J 26(10):4131-41, 2012.
          17. Guan PP, Yu X, Guo JJ, Wang Y, Wang T, Li JY, Konstantopoulos K, Wang ZY, Wang P. By activating matrix metalloproteinase-7, shear stress promotes chondrosarcoma cell motility, invasion and lung colonization. Oncotarget 6(11):9140-59, 2015.
          18. Hamamura K, Zhang P, Zhao L, Shim JW, Chen A, Dodge TR, Wan Q, Shih H, Na S, Lin CC, Sun HB, Yokota H. Knee loading reduces MMP13 activity in the mouse cartilage. BMC Musculoskelet Disord 14(1):312, 2013.
          19. Hosoya T, Maruyama A, Kang MI, Kawatani Y, Shibata T, Uchida K, Warabi E, Noguchi N, Itoh K, Yamamoto M. Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells. J Biol Chem 280(29):27244-27250, 2005.
          20. Jaitovich A, Mehta S, Na N, Ciechanover A, Goldman RD, Ridge KM. Ubiquitin-proteasome-mediated degradation of keratin intermediate filaments in mechanically stimulated A549 cells. J Biol Chem 283(37):25348-25355, 2008.
          21. Kamel MA, Picconi JL, Lara-Castillo N, Johnson ML. Activation of β-catenin signaling in MLO-Y4 osteocytic cells versus 2T3 osteoblastic cells by fluid flow shear stress and PGE2: implications for the study of mechanosensation in bone. Bone 47(5):872-881, 2010.
          22. Lee CY, Hsu HC, Zhang X, Wang DY, Luo ZP. Cyclic compression and tension regulate differently the metabolism of chondrocytes. J Musculoskeletal Res 9(2):59-64, 2005.

          23. Li M, Liu X, Zhang Y, Di M, Wang H, Wang L, Chen Y, Liu X, Cao X, Zeng R, Zhang Y, Zhang M. Upregulation of Dickkopf1 by oscillatory shear stress accelerates atherogenesis. J Mol Med (Berl) 94(4):431-41, 2016.
          24. Liao C, Cheng T, Wang S, Zhang C, Jin L, Yang Y. Shear stress inhibits IL-17A-mediated induction of osteoclastogenesis via osteocyte pathways. Bone 101:10-20, 2017.
          25. Liu J, Bi X, Chen T, Zhang Q, Wang SX, Chiu JJ, Liu GS, Zhang Y, Bu P, Jiang F. Shear stress regulates endothelial cell autophagy via redox regulation and Sirt1 expression. Cell Death Dis 6:e1827, 2015.
          26. Malone AM, Batra NN, Shivaram G, Kwon RY, You L, Kim CH, Rodriguez J, Jair K, Jacobs CR. The role of actin cytoskeleton in oscillatory fluid flow-induced signaling in MC3T3-E1 osteoblasts. Am J Physiol Cell Physiol 292(5):C1830-C1836, 2007.
          27. Maycas M, Ardura JA, de Castro LF, Bravo B, Gortázar AR, Esbrit P. Role of the parathyroid hormone type 1 receptor (PTH1R) as a mechanosensor in osteocyte survival. J Bone Miner Res 30(7):1231-44, 2015.
          28. Maycas M, Bravo-Molina B, Fernández de Castro L, Pozuelo JM, Forriol F, P Esbrit, Rodríguez de Gortázar A. High glucose alters the antiapoptotic response to mechanical stimulation in MLO-Y4 osteocytic cells. Trauma Fund MAPFRE 25(2):97-100, 2014.
          29. Metaxa E, Meng H, Kaluvala SR, Szymanski MP, Paluch RA, Kolega J. Nitric oxide-dependent stimulation of endothelial cell proliferation by sustained high flow. Am J Physiol Heart Circ Physiol 295(2):H736-H742, 2008.
          30. Ni J, Waldman A, Khachigian LM. c-Jun regulates shear- and injury-inducible Egr-1 expression, vein graft stenosis after autologous end-to-side transplantation in rabbits, and intimal hyperplasia in human saphenous veins. J Biol Chem 285(6):4038-4048, 2010.
          31. Qi J, Chi L, Faber J, Koller B, Banes AJ. ATP reduces gel compaction in osteoblast-populated collagen gels. J Appl Physiol 102(3):1152-60, 2007.
          32. Radel C, Carlile-Klusacek M, Rizzo V. Participation of caveolae in ?1 integrin-mediated mechanotransduction. Biochem Biophys Res Commun 358(2):626-631, 2007.
          33. Radel C, Rizzo V. Integrin mechanotransduction stimulates caveolin-1 phosphorylation and recruitment of Csk to mediate actin reorganization. Am J Physiol Heart Circ Physiol 288(2):H936-H945, 2005.
          34. Ridge KM, Linz L, Flitney FW, Kuczmarski ER, Chou YH, Omary MB, Sznajder JI, Goldman RD. Keratin 8 phosphorylation by protein kinase C ? regulates shear stress-mediated disassembly of keratin intermediate filaments in alveolar epithelial cells. J Biol Chem 280(34):30400-30405, 2005.
          35. Riehl BD, Lee JS, Ha L, Kwon IK, Lim JY. Flowtaxis of osteoblast migration under fluid shear and the effect of RhoA kinase silencing. PLoS One 12(2):e0171857, 2017.
          36. Riehl BD, Lee JS, Ha L, Lim JY. Fluid-flow-induced mesenchymal stem cell migration: role of focal adhesion kinase and RhoA kinase sensors. J R Soc Interface 12(107), 2015. pii: 20150300.
          37. Rosser J, Bonewald LF. Studying osteocyte function using the cell lines MLO-Y4 and MLO-A5. Methods Mol Biol 816:67-81, 2012.
          38. Shim JW, Hamamura K, Chen A, Wan Q, Na S, Yokota H. Rac1 mediates load-driven attenuation of mRNA expression of nerve growth factor ? in cartilage and chondrocytes. J Musculoskelet Neuronal Interact 13(3):372-9, 2013.
          39. Siu KL, Gao L, Cai H. Differential roles of /NOXO1 and NOX2/p47phox in mediating endothelial redox responses to oscillatory and unidirectional laminar shear stress. J Biol Chem 291(16):8653-62, 2016.
          40. Sivaramakrishnan S, DeGiulio JV, Lorand L, Goldman RD, Ridge KM. Micromechanical properties of keratin intermediate filament networks. PNAS 105(3):889-894, 2008.
          41. Sivaramakrishnan S, Schneider JL, Sitikov A, Goldman RD, Ridge KM. Shear stress induced reorganization of the keratin intermediate filament network requires phosphorylation by protein kinase C ?. Mol Biol Cell 20(11):2755-2765, 2009.
          42. Spatz JM, Wein MN, Gooi JH, Qu Y, Garr JL, Liu S, Barry KJ, Uda Y, Lai F, Dedic C, Balcells-Camps M, Kronenberg HM, Babij P, Pajevic PD. The Wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytes in vitro. J Biol Chem 290(27):16744-58, 2015.
          43. Srivastava T, McCarthy ET, Sharma R, Cudmore PA, Sharma M, Johnson ML, Bonewald LF. Prostaglandin E(2) is crucial in the response of podocytes to fluid flow shear stress. J Cell Commun Signal 4(2):79-90, 2010.
          44. Stachelek SJ, Alferiev I, Connolly JM, Sacks M, Hebbel RP, Bianco R, Levy RJ. Cholesterol-modified polyurethane valve cusps demonstrate blood outgrowth endothelial cell adhesion post-seeding in vitro and in vivo. Ann Thorac Surg 81(1):47-55, 2006.
          FLEXCELL® INTERNATIONAL CORPORATION
          76
          45. Sun HB, Liu Y, Qian L, Yokota H. Model-based analysis of matrix metalloproteinase expression under mechanical shear. Ann Biomed Eng 31(2):171-180, 2003.
          46. Takai E, Landesberg R, Katz RW, Hung CT, Guo XE. Substrate modulation of osteoblast adhesion strength, focal adhesion kinase activation, and responsiveness to mechanical stimuli. Mol Cell Biomech 3(1):1-12, 2006.
          47. Thaler JD, Achari Y, Lu T, Shrive NG, Hart DA. Estrogen receptor ? and truncated variants enhance the expression of transfected MMP-1 promoter constructs in response to specific mechanical loading. Biology of Sex Differences 5:14, 2014.
          48. Tran J, Magenau A, Rodriguez M, Rentero C, Royo T, Enrich C, Thomas SR, Grewal T, Gaus K. Activation of endothelial nitric oxide (eNOS) occurs through different membrane domains in endothelial cells. PLoS One 11(3):e0151556, 2016.
          49. Wang XL, Fu A, Spiro C, Lee HC. Proteomic analysis of vascular endothelial cells-effects of laminar shear stress and high glucose. J Proteomics Bioinform 2:445, 2009.
          50. Wang P, Guan PP, Wang T, Yu X, Guo JJ, Konstantopoulos K, Wang ZY. Interleukin-1β and cyclic AMP mediate the invasion of sheared chondrosarcoma cells via a matrix metalloproteinase-1-dependent mechanism. Biochim Biophys Acta 1843(5):923-33, 2014.
          51. Wang P, Zhu F, Konstantopoulos K. The antagonistic actions of endogenous interleukin-1β and 15-deoxy-?12,14-prostaglandin J2 regulate the temporal synthesis of matrix metalloproteinase-9 in sheared chondrocytes. J Biol Chem 287(38):31877-93, 2012.
          52. Wang P, Zhu F, Lee NH, Konstantopoulos K. Shear-induced interleukin-6 synthesis in chondrocytes: roles of E prostanoid (EP) 2 and EP3 in cAMP/protein kinase A- and PI3-K/Akt-dependent NF-?B activation. J Biol Chem 285(32):24793-24804, 2010.
          53. Wu L, Gao X, Brown RC, Heller S, O'Neil RG. Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells. Am J Physiol Renal Physiol 293(5):F1699-F1713, 2007.
          54. Yang B, Rizzo V. Shear stress activates eNOS at the endothelial apical surface through β1 containing integrins and caveolae. Cell Mol Bioeng 6(3):346-354, 2013.
          55. Yang W, Lu Y, Kalajzic I, Guo D, Harris MA, Gluhak-Heinrich J, Kotha S, Bonewald LF, Feng JQ, Rowe DW, Turner CH, Robling AG, Harris SE. Dentin matrix protein 1 gene cis-regulation: use in osteocytes to characterize local responses to mechanical loading in vitro and in vivo. J Biol Chem 280(21):20680-20690, 2005.
          56. Yokota H, Goldring MB, Sun HB. CITED2-mediated regulation of MMP-1 and MMP-13 in human chondrocytes under flow shear. J Biol Chem 278(47):47275-47280, 2003.
          57. Yoo PS, Mulkeen AL, Dardik A, Cha CH. A novel in vitro model of lymphatic metastasis from colorectal cancer. J Surg Res 143(1):94-98, 2007.
          58. Zhang J, Zhang HY, Zhang M, Qiu ZY, Wu YP, Callaway DA, Jiang JX, Lu L, Jing L, Yang T, Wang MQ. Connexin43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanically-stimulated temporomandibular joint cartilage. Osteoarthritis Cartilage 22(6):822-30, 2014.
          59. Zhang K, Barragan-Adjemian C, Ye L, Kotha S, Dallas M, Lu Y, Zhao S, Harris M, Harris SE, Feng JQ, Bonewald LF. E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol Cell Biol 26(12):4539-45, 2006.
          60. Zhu F, Wang P, Kontrogianni-Konstantopoulos A, Konstantopoulos K. Prostaglandin (PG)D(2) and 15-deoxy-?(12,14)-PGJ(2), but not PGE(2), mediate shear-induced chondrocyte apoptosis via protein kinase A-dependent regulation of polo-like kinases. Cell Death Differ 17(8):1325-1334, 2010.
          61. Zhu F, Wang P, Lee NH, Goldring MB, Konstantopoulos K. Prolonged application of high fluid shear to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. PLoS One 5(12):e15174, 2010.



          化工儀器網(wǎng)

          采購(gòu)商登錄
          記住賬號(hào)    找回密碼
          沒(méi)有賬號(hào)?免費(fèi)注冊(cè)

          提示

          ×

          *您想獲取產(chǎn)品的資料:

          以上可多選,勾選其他,可自行輸入要求

          個(gè)人信息:

          溫馨提示

          該企業(yè)已關(guān)閉在線交流功能

          旺苍县| 凤翔县| 东辽县| 仪陇县| 广德县| 海宁市| 西丰县| 永川市| 甘谷县| 武隆县| 永川市| 开封县| 精河县| 房产| 喀喇| 肇东市| 内江市| 兴海县| 达孜县| 息烽县| 新蔡县| 滕州市| 贺州市| 凤城市| 丰城市| 道孚县| 大关县| 莆田市| 进贤县| 福安市| 汤原县| 上林县| 贵溪市| 宜昌市| 涿州市| 江都市| 措勤县| 垣曲县| 洛阳市| 华亭县| 嘉荫县|