目錄:北京易科泰生態(tài)技術(shù)有限公司>>動(dòng)物>>動(dòng)物呼吸代謝測(cè)量>> 斑馬魚(yú)高通量呼吸代謝測(cè)量系統(tǒng)
參考價(jià) | 面議 |
參考價(jià) | 面議 |
更新時(shí)間:2024-08-26 17:18:12瀏覽次數(shù):233評(píng)價(jià)
聯(lián)系我們時(shí)請(qǐng)說(shuō)明是化工儀器網(wǎng)上看到的信息,謝謝!
產(chǎn)地類(lèi)別 | 國(guó)產(chǎn) | 價(jià)格區(qū)間 | 面議 |
---|---|---|---|
應(yīng)用領(lǐng)域 | 醫(yī)療衛(wèi)生,環(huán)保,生物產(chǎn)業(yè),農(nóng)業(yè),綜合 |
熒光光纖氧氣測(cè)量技術(shù)具有高精確度、高可靠性、響應(yīng)時(shí)間短、適用于氣相和液相等優(yōu)勢(shì),因此隨著技術(shù)的問(wèn)世,精確、高通量測(cè)量微小生物的呼吸和評(píng)估其能量代謝成為可能。高通量呼吸測(cè)量系統(tǒng)基于熒光光纖氧氣測(cè)量技術(shù),能夠?qū)?/span>斑馬魚(yú)的胚胎及幼魚(yú)進(jìn)行測(cè)量,測(cè)定其耗氧量,進(jìn)而評(píng)估其代謝水平。系統(tǒng)在生物醫(yī)學(xué)、實(shí)驗(yàn)生物學(xué)、污染生態(tài)學(xué)與環(huán)境毒理學(xué)、環(huán)境科學(xué)、氣候變化研究等領(lǐng)域具有越來(lái)越重要的應(yīng)用價(jià)值。
系統(tǒng)由內(nèi)置熒光光纖氧氣傳感器的微型呼吸室、氧氣測(cè)量主機(jī)及數(shù)據(jù)采集分析軟件組成,可對(duì)96個(gè)通道的樣品進(jìn)行同步測(cè)量。
功能特點(diǎn)
l 氧氣測(cè)量高精度、高可靠性、低功耗、低交叉敏感性、快速響應(yīng)時(shí)間
l 輕松校準(zhǔn)
l 非侵入性和非破壞性測(cè)量
l 緊湊設(shè)計(jì),適用于溫控培養(yǎng)箱和/或搖床
技術(shù)參數(shù)
1. 檢測(cè)技術(shù):光纖氧傳感器技術(shù)。
2. 適用場(chǎng)景:原位檢測(cè),可在培養(yǎng)箱里或搖床上使用,便于溫度控制。
3. 呼吸室:透明聚苯乙烯材質(zhì),支持預(yù)消毒處理,可重復(fù)使用。
4. 氧氣測(cè)量主機(jī):?jiǎn)蝹€(gè)重670 g,162 x 102 x 32 mm
5. 主機(jī)內(nèi)置溫度傳感器:0-50°C,分辨率0.012°C,精度±0.5°C
6. 主機(jī)內(nèi)置壓強(qiáng)傳感器:300-1100mbar,分辨率0.11mbar,精度±6mbar
7. 最大采樣頻率:?jiǎn)瓮ǖ兰せ顣r(shí)可達(dá)10-20次每秒
8. 氧氣測(cè)量精度:±0.1% O2@1% O2或±0.05 mg/L@0.44 mg/L
9. 氧氣測(cè)量分辨率:0.01% O2@1% O2或0.005 mg/L@0.44 mg/L
10. 電源:5VDC,USB供電
11. 響應(yīng)時(shí)間<30s
12. 通道數(shù):96
13. 系統(tǒng)適配其他魚(yú)類(lèi)的胚胎及幼魚(yú)
14. 可選配斑馬魚(yú)成魚(yú)的靜態(tài)及動(dòng)態(tài)呼吸測(cè)量系統(tǒng)
參考文獻(xiàn)
1. Feng, W.-W., Chen, H.-C., Audira, G., Suryanto, M.E., Saputra, F., Kurnia, K.A., Vasquez, R.D., Casuga, F.P., Lai, Y.-H., Hsiao, C.-D., Hung, C.-H., 2024. Evaluation of Tacrolimus’ Adverse Effects on Zebrafish in Larval and Adult Stages by Using Multiple Physiological and Behavioral Endpoints. Biology (Basel) 13, 112.
2. Glass, B.H., Jones, K.G., Ye, A.C., Dworetzky, A.G., Barott, K.L., 2023. Acute heat priming promotes short-term climate resilience of early life stages in a model sea anemone. PeerJ 11, e16574.
3. Heuer, R.M., Wang, Y., Pasparakis, C., Zhang, W., Scholey, V., Margulies, D., Grosell, M., 2023. Effects of elevated CO2 on metabolic rate and nitrogenous waste handling in the early life stages of yellowfin tuna (Thunnus albacares). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 280, 111398.
4. K?mmer, N., Reimann, T., Ovcharova, V., Braunbeck, T., 2023. A novel automated method for the simultaneous detection of breathing frequency and amplitude in zebrafish (Danio rerio) embryos and larvae. Aquatic Toxicology 258, 106493.
5. Louhi, P., Pettinau, L., H?rk?nen, L.S., Anttila, K., Huusko, A., 2023. Carryover effects of environmental stressors influence the life performance of brown trout. Ecosphere 14, e4361.
6. Mandic, M., Pan, Y.K., Gilmour, K.M., Perry, S.F., 2020. Relationships between the peak hypoxic ventilatory response and critical O2 tension in larval and adult zebrafish ( Danio rerio ). Journal of Experimental Biology jeb.213942.
7. Mathiron, A.G.E., Gallego, G., Silvestre, F., 2023. Early-life exposure to permethrin affects phenotypic traits in both larval and adult mangrove rivulus Kryptolebias marmoratus. Aquatic Toxicology 259, 106543.
8. Moore, B., Jolly, J., Izumiyama, M., Kawai, E., Ryu, T., Ravasi, T., 2023. Clownfish larvae exhibit faster growth, higher metabolic rates and altered gene expression under future ocean warming. Science of The Total Environment 873, 162296.
9. Park, K.-H., Ye, Z., Zhang, J., Hammad, S.M., Townsend, D.M., Rockey, D.C., Kim, S.-H., 2019. 3-ketodihydrosphingosine reductase mutation induces steatosis and hepatic injury in zebrafish. Sci Rep 9, 1138.
10. Ricarte, M., Prats, E., Montemurro, N., Bedrossiantz, J., Bellot, M., Gómez-Canela, C., Raldúa, D., 2023. Environmental concentrations of tire rubber-derived 6PPD-quinone alter CNS function in zebrafish larvae. Science of The Total Environment 896, 165240.
11. Saputra, F., Lai, Y.-H., Roldan, M.J.M., Alos, H.C., Aventurado, C.A., Vasquez, R.D., Hsiao, C.-D., 2023. The Effect of the Pyrethroid Pesticide Fenpropathrin on the Cardiac Performance of Zebrafish and the Potential Mechanism of Toxicity. Biology 12, 1214.
12. Schuster, L., Cameron, H., White, C.R., Marshall, D.J., 2021. Metabolism drives demography in an experimental field test. Proceedings of the National Academy of Sciences 118, e2104942118.
13. Scovil, A.M., Boloori, T., de Jourdan, B.P., Speers-Roesch, B., 2023. The effect of chemical dispersion and temperature on the metabolic and cardiac responses to physically dispersed crude oil exposure in larval American lobster (Homarus americanus). Marine Pollution Bulletin 191, 114976.
14. Varshney, S., Gora, A.H., Kiron, V., Siriyappagouder, P., Dahle, D., K?gel, T., ?rnsrud, R., Olsvik, P.A., 2023. Polystyrene nanoplastics enhance the toxicological effects of DDE in zebrafish (Danio rerio) larvae. Science of The Total Environment 859, 160457.
15. Varshney, S., Gora, A.H., Siriyappagouder, P., Kiron, V., Olsvik, P.A., 2022. Toxicological effects of 6PPD and 6PPD quinone in zebrafish larvae. Journal of Hazardous Materials 424, 127623.
16. Varshney, S., Lund?s, M., Siriyappagouder, P., Kristensen, T., Olsvik, P.A., 2024. Ecotoxicological assessment of Cu-rich acid mine drainage of Sulitjelma mine using zebrafish larvae as an animal model. Ecotoxicology and Environmental Safety 269, 115796.
17. Wang, Y., Pasparakis, C., Grosell, M., 2021. Role of the cardiovascular system in ammonia excretion in early life stages of zebrafish ( Danio rerio ). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 321, R377–R384.
(空格分隔,最多3個(gè),單個(gè)標(biāo)簽最多10個(gè)字符)