去年有位老師問我如何用D8 VENTURE拍出像電子衍射一樣漂亮對稱的衍射圖。印象中除了能使用APEX3-Precession image合成之外,使用固定取向的衍射方式應(yīng)該也能獲得對稱的衍射圖。但是實(shí)際實(shí)驗(yàn)的結(jié)果確實(shí)不合心意,與電子衍射圖的清晰明了有較大的差距。由于工作繁忙,就沒有繼續(xù)深究,但是在腦海里始終有這個(gè)困惑。疫情期間,在閱讀了相關(guān)的資料后,我才恍然大悟,不得不自嘲一下。怪不得當(dāng)時(shí)做電鏡的同學(xué)會不屑于回答我,這就是個(gè)簡單的Ewald Sphere問題。
▲圖1 電子衍射和X射線衍射
1、埃瓦爾德衍射球 (Ewald sphere)
埃瓦爾德衍射球是在倒易空間中表達(dá)確定晶體衍射方向的重要概念。它允許人們可視化布拉格定律的性質(zhì),將衍射實(shí)驗(yàn)簡單明了的表示了出來。如圖2所示,假設(shè)X射線照射在S點(diǎn),發(fā)生衍射,現(xiàn)以S為球心,以X射線波長的倒數(shù)1/λ為半徑,作Ewald球,入射束與球面的交點(diǎn)O*作為倒易原點(diǎn),則由布拉格定律nλ=2dsinθ易得,凡落在Ewald球面上的倒易陣點(diǎn)P所對應(yīng)的正空間的晶面,均可產(chǎn)生衍射。在X射線單晶衍射實(shí)驗(yàn)中,我們通常要通過旋轉(zhuǎn)晶體,讓盡可能多的倒易點(diǎn)能夠與Ewald球相交,從而收集完整的數(shù)據(jù)。而晶體的分辨率極限通常由晶體本身決定,所以真實(shí)的收集范圍也就簡化成兩個(gè)球面的相交。
▲圖2 Ewald Sphere
2、電子衍射和X射線衍射
同為衍射,X射線衍射和電子衍射都遵守布拉格方程,本質(zhì)上沒有區(qū)別。但是電子波的波長比X射線短的多。在透射電鏡中,當(dāng)加速電壓為200kV時(shí),電子束波長數(shù)量級約為0.0251Å。所以同樣滿足布拉格條件時(shí),電子衍射的衍射角要比X射線小很多。同時(shí)電子衍射的Ewald sphere的半徑會特別大,此時(shí)Ewald Sphere與衍射極限倒易球的截面就會接近于一個(gè)平面。晶體的尺寸是有限的,衍射點(diǎn)并不是數(shù)學(xué)意義上的點(diǎn),而是具有一定的衍射體積。特別是電鏡分析薄片試樣時(shí),衍射點(diǎn)陣會擴(kuò)展成衍射桿。此時(shí)略微偏離布拉格方程的晶面方向仍然能發(fā)生衍射。所以薄片晶體的電子衍射花樣通常是零層倒易界面的放大像。而室內(nèi)光源的X射線通常波長比較長,采集的圖像為相交球面的投影,而非零層截面。這就造成了兩種衍射圖的差異。電子衍射圖更能直觀的反映晶體內(nèi)各晶面的位相。
▲圖3 Ewald Sphere for X-ray diffraction andElectron diffraction
3、區(qū)別不止如此
當(dāng)然電子衍射和X射線的區(qū)別不止如此。比如X射線是電磁波,而電子波是物質(zhì)波。X射線主要與原子外的電子相互作用,而電子則同時(shí)與原子核和電子相互作用,因而原子對電子的散射能力要遠(yuǎn)遠(yuǎn)高于X射線的散射能力(大約1萬倍以上)。但由于散射能力太強(qiáng),而導(dǎo)致穿透能力弱,因而只能分析表層或較薄的樣品。同時(shí),散射能力強(qiáng)還會導(dǎo)致散射電子的多重散射,從而導(dǎo)致衍射點(diǎn)的強(qiáng)度分析變得特別復(fù)雜,這就是所謂的動力學(xué)效應(yīng)。關(guān)于X射線衍射,電子衍射,以及中子衍射是一個(gè)比較大的話題。儀器信息網(wǎng)有版主曾經(jīng)寫過一篇特別好的分析和比較,感興趣的老師和同學(xué)可參考,在此我們不再多做探討。
(空格分隔,最多3個(gè),單個(gè)標(biāo)簽最多10個(gè)字符)
立即詢價(jià)
您提交后,專屬客服將第一時(shí)間為您服務(wù)